Preview

Food systems

Advanced search

Optimization of the composition of polysaccharide-based composite films as a potential food packaging material

https://doi.org/10.21323/2618-9771-2025-8-2-189-195

Abstract

The development of biodegradable food packaging based on renewable natural raw materials is one of the key trends of modern research worldwide. It is possible to obtain film materials for food packaging on the basis of corn starch and sodium carboxymethyl cellulose provided that small amounts of polyvinyl alcohol (PVA), citric acid (CA) and glycerol (Gl) are added to the polymer composition. The paper presents the results of the composition optimization of such films using the response surface methodology. The influence of independent variables (PVA concentration: 7, 10 and 15.5; CA concentration: 5, 7 and 9; Gl concentration: 20, 25 and 50 % in relation to the polysaccharides weight) on the response variables (swelling degree, gel fraction, water vapor transmission rate, tensile strength, elongation at break and Young’s modulus) is evaluated. The sample of the optimized composition (15.5 wt. % PVA, 7 wt. % СА and 37.5 wt. % GL) has good barrier and strength properties. Theoretical calculations based on the regression model demonstrated a high correlation with the experimental data. It is shown that the inclusion to the polymer matrix of additional components (antioxidants, reinforcing agents) will improve the operational characteristics of film materials and expand their functionality.

About the Authors

T. V. Kryuk
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry
Russian Federation

Tatiana V. Kryuk, Candidate of Chemical Sciences, Senior Researcher, Docent, Deputy Director for Scientific Work

70, Rosa Luxemburg Str., Donetsk, 283048

Tel.: +7–949–381–69–21



T. G. Tyurina
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry
Russian Federation

Tatyana G. Tyurina, Doctor of Chemical Sciences, Leading Researcher of the Radical Reactions Study Department

70, Rosa Luxemburg Str., Donetsk, 283048

Tel.: +7–949–358–53–47



O. S. Popova
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry; Donetsk National University of Economics and Trade named after Mikhail Tugan-Baranovsky
Russian Federation

Oksana S. Popova, Senior Lecturer, Department of Customs Affairs and Expertise of Goods

31, Shchors Str., Donetsk, 283050

Tel.: +7–949–339–38–49



N. A. Romanenko
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry
Russian Federation

Natalya A. Romanenko, Junior Researcher, Youth Laboratory оf Functional Materials Based оn Polysaccharides

70, Rosa Luxemburg Str., Donetsk, 283048

Tel.: +7–949–347–13–21



G. P. Goncharuk
Enikolopov Institute of Synthetic Polymeric Materials
Russian Federation

Galina P. Goncharuk, Candidate of Chemical Sciences, Senior Researcher

70, Profsoyuznaya Str., Moscow, 117393

Tel.: +7–929–995–46–91



E. N. Trush
L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry
Russian Federation

Eugene N. Trush, Junior Researcher, Youth Laboratory оf Functional Materials Based оn Polysaccharides

70, Rosa Luxemburg Str., Donetsk, 283048

Tel.: +7–949–394–06–55



References

1. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., Beas, I. N. (2020). Environmental impact of food packaging materials: А review of contemporary development from conventional plastics to polylactic acidbased materials. Materials, 13(21), Article 4994. https://doi.org/10.3390/ma13214994

2. Burak, L. Ch. (2023). Overview of the development of biodegradable packaging materials for the food industry. Polzunovskiy Vеstnik, 1, 91–105. (In Russian) https://doi.org/10.25712/ASTU.2072-8921.2023.01.012

3. Baranwal, J., Barse, B., Fais, A., Delogu, G. L., Kumar, A. (2022). Biopolymer: A sustainable material for food and medical applications. Polymers, 14(5), Article 983. https://doi.org/10.3390/polym14050983

4. Wypij, M., Trzcińska-Wencel, J., Golińska, P., Avila-Quezada, G. D., Ingle, A. P., Rai, M. (2023). The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Сhances, challenges, and consumers’ perception. Frontiers in Chemistry, 10, Article 1106230. https://doi.org/10.3389/fchem.2022.1106230

5. Onyeaka, H. N., Nwabor, O. F. (2022). Natural polymers as food packaging materials. Chapter in a book: Food Preservation and Safety of Natural Products. Cambridge (MA): Academic Press US, 2022. https://doi.org/10.1016/B978-0-323-85700-0.00004-6

6. Gonzlez-López, M. E., de Jesús Calva-Estrada, S., Gradilla-Hernández, M. S., Barajas-Alvarez, P. (2023). Current trends in biopolymers for food packaging: А review. Frontiers in Sustainable Food Systems, 7, Article 1225371. https://doi.org/10.3389/fsufs.2023.1225371

7. Panda, P. K., Sadeghi, K., Seo, J. (2022). Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packaging and Shelf Life, 33, Article 100904. https://doi.org/10.1016/j.fpsl.2022.100904

8. Gong, W., He, W.-Y., Hou, Y.-Y., Li, Y.-X., Hu, Y.-Y., Zhu, B.-W. et al. (2024). Polyvinyl alcohol-based multifunctional hydrogel film: A novel strategy for food preservation packaging. Food Bioscience, 59, Article 104125. https://doi.org/10.1016/j.fbio.2024.104125

9. Teodorescu, M., Bercea, M., Morariu, S. (2018). Biomaterials of poly (vinyl alcohol) and natural polymers. Polymer Reviews, 58(2), 247–287. https://doi.org/10.1080/15583724.2017.1403928

10. Deng, H., Su, J., Zhang, W., Khan, A., Sani, M. A., Goksen, G. et al. (2024). A review of starch/polyvinyl alcohol (PVA) blend film: A potential replacement for traditional plastic-based food packaging film. International Journal of Biological Macromolecules, 273(Part 1), Article 132926. https://doi.org/10.1016/j.ijbiomac.2024.132926

11. Wen, L. Liang, Y., Lin, Z., Xie, D., Zheng, Z., Xu, C. et al. (2021). Design of multifunctional food packaging films based on carboxymethyl chitosan/polyvinyl alcohol crosslinked network by using citric acid as crosslinker. Polymer, 230, Article 124048. https://doi.org/10.1016/j.polymer.2021.124048

12. Xie, Y., Pan, Y., Cai, P. (2022). Hydroxyl crosslinking reinforced bagasse cellulose/polyvinyl alcohol composite films as biodegradable packaging. Industrial Crops and Products, 176, Article 114381. https://doi.org/10.1016/j.indcrop.2021.114381

13. Zhang, S., Guo, H. G., Cran, M. J. (2024). Influence of PVA resin and cross-linking agent on the structure and properties of semi-refined carrageenan-based packaging films. Journal of Physics: Conference Series, 2680(1), Article 012006. https://doi.org/10.1088/1742-6596/2680/1/012006

14. Gómez-Aldapa, C. A., Velazquez, G., Gutierrez, M. C., Rangel-Vargas, E., Castro-Rosas, J., Aguirre-Loredo, R. Y. (2020). Effect of polyvinyl alcohol on the physico-chemical properties of biodegradable starch films. Materials Chemistry and Physics, 239, Article 122027. https://doi.org/10.1016/j.matchemphys.2019.122027

15. Ma, Q., Du, L., Yang, Y., Wang, L. (2017). Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocolloids, 63, 677–684. https://doi.org/10.1016/j.foodhyd.2016.10.009

16. Bertolo, M. R. V., Dias, L., de Oliveira Filho, J. G., Alves, F., Marangon, C., da Conceiсаo Amaro Martins, V. et al. (2022). Central composite design optimization of active and physical properties of food packaging films based on chitosan/gelatin/pomegranate peel extract. Food Packaging and Shelf Life, 34, Article 100986. https://doi.org/10.1016/j.fpsl.2022.100986

17. Dean, A., Voss, D., Draguljić, D. (2017). Design and Analysis of Experiments. Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-52250-0

18. Li, Z., Lu, D., Gao, X. (2021). Optimization of mixture proportions by statistical experimental design using response surface method — A review. Journal of Building Engineering, 36(2), Article 102101. https://doi.org/10.1016/j.jobe.2020.102101

19. Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Hoboken: John Wiley & Sons, 2016.

20. Bajiс, M., Oberlintner, A., Kоrge, K., Likozar, B., Novak, U. (2020) Formulation of active food packaging by design: Linking composition of the film-forming solution to properties of the chitosan-based film by response surface methodology (RSM) modelling. International Journal of Biological Macromolecules, 160, 971–978. https://doi.org/10.1016/j.ijbiomac.2020.05.186

21. Contreras-Chávez, R., Garnica-Romo, M. G., Martínez-Flores, H. E., de Dios Figueroa-Cárdenas, J., Anjos, R. C. A., Topete-Betancourt, A. (2021). Optimization of acetylated starch films from purple sweet potato: Effect of glycerol, carboxymethylcellulose, and stearic acid. Materials Research Express, 8, Article 115101. https://doi.org/10.1088/2053-1591/ac36fa

22. Franco, E., Dussán, R., Navia, D. P., Amú, M. (2021). Study of the annealing effect of starch/polyvinyl alcohol films crosslinked with glutaraldehyde. Gels, 7(4), Article 249. https://doi.org/10.3390/gels7040249

23. Guleria, S., Singh, H., Jain, A., Arya, S. K., Puri, S., Khatri, M. (2024). Response surface methodology-based preparation of sago starch bioplastic film for food packaging. International Journal of Polymer Analysis and Characterization, 29(7), 478–495. https://doi.org/10.1080/1023666X.2024.2383480

24. Yari, S., Mohammadi-Rovshandeh, J., Shahrousvandhttps, M. (2022). Preparation and optimization of starch/poly vinyl alcohol/ZnO nanocomposite films applicable for food packaging. Journal of Polymers and the Environment, 30, 1502–1517. https://doi.org/10.21203/rs.3.rs-526313/v1

25. Mittal, M., Chaudhary, R., Phutela, K., Airon, M., Singh, R. C. (2022). Modeling and performance optimization of starch-based biocomposite films using response surface methodology. Journal of Applied Research and Technology, 20(4), 430–447. https://doi.org/10.22201/icat.24486736e.2022.20.4.1239

26. Dewi, R., Sylvia, N., Zulnazri, Z., Fithra, H., Riza, M., Siregar, J. P. et al. (2024). The optimization of avocado-seed-starch-based degradable plastic synthesis with a polylactic acid (PLA) blend using response surface methodology (RSM). Polymers, 16(16), Article 2384. https://doi.org/10.3390/polym16162384

27. Kryuk, Т. V., Popova, O. S., Tyurina, Т. G., Siversky, A. V. Romanenko, N. A. (2024). Development of film materials composition based on polysaccharides for food packaging. Food Industry: Science and Technologies, 17(4), 67–75. (In Russian)

28. Noè, С., Tonda-Turo, С., Chiappone, А., Sangermano, М., Hakkarainen, М. (2020). Light processable starch hydrogels. Polymers, 12(6), 1359–1372. https://doi.org/10.3390/polym12061359

29. Ahmed, A. S., Mandal, U. K., Taher, M., Susanti, D., Jaffri, J. M. (2017). PVA-PEG physically cross-linked hydrogel film as a wound dressing: Experimental design and optimization. Pharmaceutical Development and Technology, 23(8), 751–760. https://doi.org/10.1080/10837450.2017.1295067

30. Ghiasi, F., Golmakani, M.-T., Eskandari, M. H., Hosseini, S. M. H. (2020). A new approach in the hydrophobic modification of polysaccharide-based edible films using structured oil nanoparticles. Industrial Crops and Products, 154, Article 112679. https://doi.org/10.1016/j.indcrop.2020.112679

31. Yao, X., Qin, Y., Zhang, M., Zhang, J., Qian, C., Liu, J. (2021). Development of active and smart packaging films based on starch, polyvinyl alcohol and betacyanins from different plant sources. International Journal of Biological Macromolecules, 183, 358–368. https://doi.org/10.1016/j.ijbiomac.2021.04.152

32. Wilpiszewska, K., Antosik, A. K., Schmidt, B., Janik, J., Rokicka, J. (2020). Hydrophilic films based on carboxymethylated derivatives of starch and cellulose. Polymers, 12(11), Article 2447. https://doi.org/10.3390/polym12112447

33. Ghanbarzadeh, B., Almasi, H., Entezami, A. A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products, 33(1), 229–235. https://doi.org/10.1016/j.indcrop.2010.10.016

34. Yoon, S.-D., Chough, S.-H., Park, H.-R. (2006). Properties of starch-based blend films using citric acid as additive. II. Journal of Applied Polymer Science, 100(3), 2554–2560. https://doi.org/10.1002/app.23783

35. Das, A., Uppaluri, R., Das, C. (2019). Feasibility of poly-vinyl alcohol/starch/glycerol/citric acid composite films for wound dressing applications. International Journal of Biological Macromolecules, 131, 998–1007. https://doi.org/10.1016/j.ijbiomac.2019.03.160

36. Nargesi Khoramabadi, H., Arefian, M., Hojjati, M., Tajzad, I., Mokhtarzade, A., Mazhar, M. et al. (2020). A review of polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) composites for various applications. Journal of Composites and Compounds, 2(3), 69–76. https://doi.org/10.29252/jcc.2.2.2

37. Abedi-Firoozjah, R., Chabook, N., Rostami, O., Heydari, M., Kolahdouz-Nasiri, A., Javanmardi, F. et al. (2023). PVA/starch films: An updated review of their preparation, characterization, and diverse applications in the food industry. Polymer Testing, 118, Article 107903. https://doi.org/10.1016/j.polymertesting.2022.107903

38. Basiak, E., Lenart, A., Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10(4), Article 412. https://doi.org/10.3390/polym10040412

39. Napierala, D. M., Nowotarska, A. (2006). Water vapour transmission properties of wheat starch-sorbitol film. Acta Agrophysica, 7(1), 151–159.

40. Laohakunjit, N., Noomhorm, A. (2004). Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch, 56(8), 348–356. https://doi.org/10.1002/star.200300249

41. Boonthod, C. (2021). Development of polyvinyl alcohol/carboxymethyl cellulose/starch biodegradable film for active packaging. Bangkok: Silpakorn University, 2021.

42. Taghizadeh, M. T., Sabouri, N., Ghanbarzadeh, B. (2013). Polyvinyl alcohol: Starch: Carboxymethyl cellulose containing sodium montmorillonite clay blends; mechanical properties and biodegradation behavior. SpringerPlus, 2(1), Article 376. https://doi.org/10.1186/2193-1801-2-376

43. Gulati, K., Lal, S. Arora, S. (2019). Synthesis and characterization of PVA/Starch/CMC composite films reinforced with walnut (Juglans regia L.) shell flour. SN Applied Sciences, 1, Article 1416. https://doi.org/10.1007/s42452-019-1462-8

44. Cabello, S. P., Takara, E. A., Marchese, J., Ochoa, N. A. (2015). Influence of plasticizers in pectin films: Microstructural changes. Materials Chemistry and Physics, 162, 491–497. https://doi.org/10.1016/j.matchemphys.2015.06.019

45. Liu, T., Peng, X., Chen, Y. -N., Bai, Q. -W., Shang, C., Zhang, L., Wang, H. (2018). Hydrogen-bonded polymer–small molecule complexes with tunable mechanical properties. Macromolecular Rapid Communications, 39(9), Article 1800050. https://doi.org/10.1002/marc.201800050

46. Mustafa, P., Niazi, M. B. K., Jahan, Z., Rafiq, S., Ahmad, T., Sikander, U. et al. (2021). Improving functional properties of PVA/starch-based films as active and intelligent food packaging by incorporating propolis and anthocyanin. Polymers and Polymer Composites, 29, 1472–1484. https://doi.org/10.1177/0967391120973503

47. Qin, Y., Yun, D., Xu, F., Chen, D., Kan, J., Liu, J. (2021). Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano-complexes: Functionality, stability and application. Food Hydrocolloids, 119, Article 106850. https://doi.org/10.1016/j.foodhyd.2021.106850


Review

For citations:


Kryuk T.V., Tyurina T.G., Popova O.S., Romanenko N.A., Goncharuk G.P., Trush E.N. Optimization of the composition of polysaccharide-based composite films as a potential food packaging material. Food systems. 2025;8(2):189-195. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-2-189-195

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)