Development of a dietary supplement with iron oxide nanoparticles and study of its chronic toxicity and biological effects
https://doi.org/10.21323/2618-9771-2025-8-1-114-123
Abstract
Anemia is a global public health problem, the main cause of which is iron deficiency in the body. The difficulty of enriching the diet with iron is explained by the oxidative nature of iron, which leads to undesirable sensory changes and a decrease in the quality and shelf life of food. The work is devoted to the selection of bioavailable forms of iron, which, when added to food in an appropriate amount, are not rejected by the body. The aim of the work was to study in experiments on laboratory rats the chronic toxicity and effectiveness of the developed dietary supplement “PoliFerVit” in comparison with commercial preparations of iron oxides E172 (Fe2O3 + FeO) and iron sulfate (FeSO4 × 7H2O). The objects of the study were iron (II) sulfate heptahydrate (FeSO4 × 7H2O), a mixture of iron oxides E172 (Fe2O3 + FeO), dietary supplement “PoliFerVit” for use as a source of iron (FeO, Fe2O3, Fe3O4), vitamin C, and dihydroquercetin. In the process of work, a biologically active food additive (dietary supplement) “PoliFerVit” was developed, the iron content in the additive is 136% of the daily requirement. A comparison of the biological activity and chronic toxicity of the dietary supplement “PoliFerVit” and commercial iron preparations showed that all studied objects, when administered daily to laboratory animals for 32 days, did not affect the body weight of animals and their physiological state, and also did not cause changes in the main indicators of the general blood test, in particular, in the leukocyte formula. The revealed dynamics towards an increase in serum iron content when using a mixture of iron oxides (up to 17%) and dietary supplement “PoliFerVit” (up to 22%) indicates similar bioavailability, and the bioavailability of dietary supplement “PoliFerVit” is higher, which is probably due to the nanoscale size of iron particles and the combined composition of the additive. An important advantage of the dietary supplement “PoliFerVit” is a less pronounced negative effect on the antioxidant system, which was expressed in an increase in the superoxide dismutase index to 44%.
About the Authors
A. S. DydykinRussian Federation
Andrey S. Dydykin, Doctor of Technical Sciences, Docent, Chief of the Department Functional and Specialized Nutrition
26, Talalikhin str., 109316, Moscow
Tel.: + 7–495–676–95–11 (264)
E. R. Vasilevskaya
Russian Federation
Ekaterina R. Vasilevskaya, Candidate of Technical Sciences, Researcher, Experimental Clinic — Research Laboratory of Biologically Active Substances of an Animal Origin
26, Talalikhin str., 109316, Moscow
Tel.: + 7–495–676–92–11
M. A. Aslanova
Russian Federation
Marietta A. Aslanova, Candidate of Technical Sciences, Leading Researcher, Head of the Direction of the Technology of Functional and Social Nutrition Products, Department Functional and Specialized Nutrition
26, Talalikhin str., 109316, Moscow
Tel: + 7–495–676–95–11 (263)
O. K. Derevitskaya
Russian Federation
Olga K. Derevitskaya, Candidate of Technical Sciences, Leading Researcher, Head of the Baby Food Technology Department, Department Functional and Specialized Nutrition
26, Talalikhin str., 109316, Moscow
Tel: + 7–495–676–95–11 (261)
E. K. Polishchuk
Russian Federation
Ekaterina K. Polishchuk, Junior Researcher, Experimental Clinic — Research Laboratory of Biologically Active Substances of an Animal Origin
26, Talalikhin str., 109316, Moscow
Tel.: + 7–495–676–95–11 (129)
N. V. Kupaeva
Russian Federation
Nadezhda V. Kupaeva, Candidate of Technical Sciences, Junior Researcher, Experimental Clinic — Research Laboratory of Biologically Active Substances of an Animal Origin
26, Talalikhin str., 109316, Moscow
Tel.: + 7–966–359–19–00
G. G. Moldovanov
Russian Federation
Gennadiy G. Moldovanov, Engineer Researcher, Experimental Clinic — Research Laboratory of Biologically Active Substances of an Animal Origin
26, Talalikhin str., 109316, Moscow
Tel.: + 7–495–676–95–11 (128)
References
1. Nielsen, O. H., Soendergaard, C., Vikner, M. E., Weiss, G (2018). Rational management of iron-deficiency anemia in inflammatory bowel disease. Nutrients, 10(1), Article 82. https://doi.org/10.3390/nu10010082
2. Stevens, G. A., Paciorek, C. J., Flores-Urrutia, M. C., Borghi, E., Namaste, S., Wirth, J. P. et al. (2022). National, regional, and global estimates of anaemia by severity in women and children for 2000–19: A pooled analysis of populationrepresentative data. The Lancet Global Health, 10(5), e627-e639. https://doi.org/10.1016/s2214-109x(22)00084-5
3. Kumar, P., Sharma, H., Sinha, D. (2021). Socio-economic inequality in anaemia among men in India: A study based on cross-sectional data. BMC Public Health, 21(1), Article 1345. https://doi.org/10.1186/s12889-021-11393-5
4. Editorial article. (2020). Report on work performed by Expert council «Actual aspects of iron deficiency in the Russian Federation» Therapy, 6(5(39)), 10–19. (In Russian) https://doi.org/10.18565/therapy.2020.5.10-19
5. Ciont, C., Mesaroș, A., Pop, O. L., Vodnar, D. C. (2023). Iron oxide nanoparticles carried by probiotics for iron absorption: A systematic review. Journal of Nanobiotechnology, 21(1), Article 124. https://doi.org/10.1186/s12951-023-01880-9
6. Kumari, A., Chauhan, A. K. (2022). Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: A review. Journal of Food Science and Technology, 59(9), 3319–3335. https://doi.org/10.1007/s13197-021-05184-4
7. Shubham, K., Anukiruthika, T., Dutta, S., Kashyap, A. V., Moses, J. A., Anandharamakrishnan, C. (2020). Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science and Technology, 99, 58–75. https://doi.org/10.1016/j.tifs.2020.02.021
8. Henare, S. J., Singh, N. N., Ellis, A. M., Moughan, P. J., Thompson, A. K., Walczyk, T. (2019). Iron bioavailability of a casein-based iron fortificant compared with that of ferrous sulfate in whole milk: A randomized trial with a crossover design in adult women. The American Journal of Clinical Nutrition, 110(6), 1362–1369. https://doi.org/10.1093/ajcn/nqz237
9. Hurrell, R. F. (2022). Ensuring the efficacious iron fortification of foods: A tale of two barriers. Nutrients, 14(8), Article 1609. https://doi.org/10.3390/nu14081609
10. Husmann, F. M., Stierli, L., Bräm, D. S., Zeder, C., Krämer, S. D., Zimmermann, M. B. et al. (2022). Kinetics of iron absorption from ferrous fumarate with and without galacto-oligosaccharides determined from stable isotope appearance curves in women. The American Journal of Clinical Nutrition, 115(3), 949–957. https://doi.org/10.1093/ajcn/nqab361
11. Ahmad, A. M. R., Ahmed, W., Iqbal, S., Javed, M., Rashid, S. (2021). Prebiotics and iron bioavailability? Unveiling the hidden association-A review. Trends in Food Science and Technology, 110, 584–590. https://doi.org/10.1016/j.tifs.2021.01.085
12. Kodentsova, V.M., Risnik, D.V., Bessonov, V.V. (2023). Ron compounds for food fortification: Comparative analysis of efficiency. Trace Elements in Medicine (Moscow), 24(1), 10–19. (In Russian) https://doi.org/10.19112/2413-6174-2023-24-1-10-19
13. Blanco-Rojo, R., Vaquero, M. P. (2019). Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Science and Emerging Technologies, 51, 126–138. https://doi.org/10.1016/j.ifset.2018.04.015
14. Askri, D., Ouni, S., Galai, S., Chovelon, B., Arnaud, J., Sturm, N. et al. (2019). Nanoparticles in foods? A multiscale physiopathological investigation of iron oxide nanoparticle effects on rats after an acute oral exposure: Trace element biodistribution and cognitive capacities. Food and Chemical Toxicology, 127, 173–181. https://doi.org/10.1016/j.fct.2019.03.006
15. Singh, K., Chopra, D. S., Singh, D., Singh, N. (2022). Nano-formulations in treatment of iron deficiency anemia: An overview. Clinical Nutrition ESPEN, 52, 12–19. https://doi.org/10.1016/j.clnesp.2022.08.032
16. Serov, D. A., Baimler, I. V., Burmistrov, D. E., Baryshev, A. S., Yanykin, D. V., Astashev, M. E. et al. (2022). The development of new nanocomposite Polytetrafluoroethylene/Fe2O3 NPs to prevent bacterial contamination in meat industry. Polymers, 14(22), Article 4880. https://doi.org/10.3390/polym14224880
17. Gudkov, S. V., Burmistrov, D. E., Lednev, V. N., Simakin, A. V., Uvarov, O. V., Kucherov, R. N. et al. (2022). Biosafety construction composite based on iron oxide nanoparticles and PLGA. Inventions, 7(3), Article 61. https://doi.org/10.3390/inventions7030061
18. Siddiqui, M. A., Wahab, R., Saquib, Q., Ahmad, J., Farshori, N. N., Al-Sheddi, E. S. et al. (2023). Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. Journal of Trace Elements in Medicine and Biology, 80, Article 127302. https://doi.org/10.1016/j.jtemb.2023.127302
19. Ince, M., Ince, O. K., Ondrasek, G. (2020). Biochemical toxicology — Heavy metals and nanomaterials. IntechOpen: London, UK, 2020. https://doi.org/10.5772/intechopen.85340
20. Kheiri, S., Liu, X., Thompson, M. (2019). Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids and Surfaces B: Biointerfaces, 184, Article 110550. https://doi.org/10.1016/j.colsurfb.2019.110550
21. Sarimov, R. M., Nagaev, E. I., Matveyeva, T. A., Binhi, V. N., Burmistrov, D. E., Serov, D. A. et al. (2022). Investigation of aggregation and disaggregation of selfassembling nano-sized clusters consisting of individual iron oxide nanoparticles upon interaction with HEWL protein molecules. Nanomaterials, 12(22), Article 3960. https://doi.org/10.3390/nano12223960
22. Sarkar, A., Sil, P. C. (2014). Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: Role of quercetin. Food and chemical Toxicology, 71, 106–115. https://doi.org/10.1016/j.fct.2014.06.003
23. Bardestani, A., Ebrahimpour, S., Esmaeili, A., Esmaeili, A. (2021). Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. Journal of Nanobiotechnology, 19(1), Article 327. https://doi.org/10.1186/s12951-021-01059-0
24. Benzie, I. F. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
25. Chernukha, I., Fedulova, L., Vasilevskaya, E., Kulikovskii, A., Kupaeva, N., Kotenkova, E. (2021). Antioxidant effect of ethanolic onion (Allium cepa) husk extract in ageing rats. Saudi Journal of Biological Sciences, 28(5), 2877–2885. https://doi.org/10.1016/j.sjbs.2021.02.020
26. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
27. Marklund, S., Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
28. Velichko, A.K., Solovev, V.B., Gengin, M.T. (2009). Methods of laboratory definition of the common peroxide of destroying activity of enzymes of plants. Bulletin of Penza State Pedagogical University named after V. G. Belinsky, 18, 44–48.
29. Semchenko, V.V., Barashkova, S.A., Nozdrin, V.I., Artemev, V.N. (2006). Histological Technique. Textbook. Omsk-Oryol: Omsk Regional Printing House, 2006.
30. Pereira, D. I. A., Bruggraber, S. F. A., Faria, N., Poots, L. K., Tagmount, M. A., Aslam, M. F. et al. (2014). Nanoparticulate iron (III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine: Nanotechnology, Biology and Medicine, 10(8), 1877–1886. https://doi.org/10.1016/j.nano.2014.06.012
31. El-Kady, M. M., Ansari, I., Arora, C., Rai, N., Soni, S., Verma, D. K. et al. (2023). Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment. Journal of Molecular Liquids, 370, Article 121046. https://doi.org/10.1016/j.molliq.2022.121046
32. Foujdar, R., Chopra, H. K., Bera, M. B., Chauhan, A. K., Mahajan, P. (2021). Effect of probe ultrasonication, microwave and sunlight on biosynthesis, bioactivity and structural morphology of punica granatum peel’s polyphenols-based silver nanoconjugates. Waste and Biomass Valorization, 12, 2283–2302. https://doi.org/10.1007/s12649-020-01175-2
33. Yuan, S., Dong, P.-Y., Ma, H.-H., Liang, S.-L., Li, L., Zhang, X.-F. (2022). Antioxidant and biological activities of the Lotus root polysaccharide-iron (III) complex. Molecules, 27(20), Article 7106. https://doi.org/10.3390/molecules27207106
34. Ghosh, R., Arcot, J. (2022). Fortification of foods with nano-iron: Its uptake and potential toxicity: Current evidence, controversies, and research gaps. Nutrition Reviews, 80(9), 1974–1984. https://doi.org/10.1093/nutrit/nuac011
35. Mahesh, T., Menon, V. P. (2004). Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytotherapy Research, 18(2), 123–127. https://doi.org/10.1002/ptr.1374
36. Kejík, Z., Kaplánek, R., Masařík, M., Babula, P., Matkowski, A., Filipenský, P. et al. (2021). Iron complexes of flavonoids-antioxidant capacity and beyond. International Journal of Molecular Sciences, 22(2), Article 646. https://doi.org/10.3390/ijms22020646
37. Li, J., Chang, X., Chen, X., Gu, Z., Zhao, F., Chai, Z. et al. (2014). Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnology Advances, 32(4), 727–743. https://doi.org/10.1016/j.biotechadv.2013.12.009
38. Fang, S., Zhuo, Z., Yu, X., Wang, H., Feng, J. (2018). Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats. Journal of Trace Elements in Medicine and Biology, 47, 12–20. https://doi.org/10.1016/j.jtemb.2018.01.002
39. Whittaker, P., Hines, F. A., Robl, M. G., Dunkel, V. C. (1996). Histopathological evaluation of liver, pancreas, spleen, and heart from iron-overloaded sprague-dawley rats. Toxicologic Pathology, 24(5), 558–563. https://doi.org/10.1177/019262339602400504
40. He, H., Huang, Q., Liu, C., Jia, S., Wang, Y., An, F. et al. (2019). Effectiveness of AOS — iron on iron deficiency anemia in rats. RSC Advances, 9(9), 5053–5063. https://doi.org/10.1039/C8RA08451C
41. Guo, R., Zhang, L., Song, D., Yu, B., Song, C., Chen, H. et al. (2024). Endogenous iron biomineralization in the mouse spleen of metabolic diseases. Fundamental Research. https://doi.org/10.1016/j.fmre.2024.07.004 (In Press, Corrected Proof)
42. Sripetchwandee, J., Kongkaew, A., Kumfu, S., Chattipakorn, N., Chattipakorn, S. C. (2025). Modulating mitochondrial dynamics preserves cognitive performance via ameliorating iron-mediated brain toxicity in iron-overload rats. European Journal of Pharmacology, 593, Article 177379. https://doi.org/10.1016/j.ejphar.2025.177379
43. Turovsky, E. A., Plotnikov, E. Y., Simakin, A. V., Gudkov, S. V., Varlamova, E. G. (2025). New magnetic iron nanoparticle doped with selenium nanoparticles and the mechanisms of their cytoprotective effect on cortical cells under ischemialike conditions. Archives of Biochemistry and Biophysics, 764, Article 110241. https://doi.org/10.1016/j.abb.2024.110241
Review
For citations:
Dydykin A.S., Vasilevskaya E.R., Aslanova M.A., Derevitskaya O.K., Polishchuk E.K., Kupaeva N.V., Moldovanov G.G. Development of a dietary supplement with iron oxide nanoparticles and study of its chronic toxicity and biological effects. Food systems. 2025;8(1):114-123. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-1-114-123