Preview

Food systems

Advanced search

Lawsonia inermis extract: Antibacterial, anticancer and antioxidant properties

https://doi.org/10.21323/2618-9771-2025-8-1-73-80

Abstract

Henna, scientifically known as Lawsonia inermis, is long used for its therapeutic benefits in several civilisations. This study examines the antibacterial, anticancer, and antioxidant properties of the leaf extract from L. inermis. The phytochemical study indicated the existence of alkaloids, flavonoids, glycosides, phenolic compounds, and tannins. GC–Mass Spectrometry detected notable bioactive chemicals, including tetracosamethyl-cyclododecasiloxane and cyclohexasiloxane. The extracts demonstrated strong antioxidant properties, as evidenced by their values of 254.32 and 121.25%, as well as their high FRAP values, demonstrating their effective ability to scavenge radicals. The antibacterial effectiveness, assessed by the disc-diffusion technique, demonstrated substantial inhibition zones against both Gram positive and Gram-negative microorganisms. The MTT experiment exhibited significant anticancer efficacy against MCF‑7 breast cancer cell lines, with an IC50 value of 1.682 μg/mL. The results indicate that extracts from L. inermis contain significant bioactive substances that have the potential to be utilised in the development of innovative medications aimed at addressing oxidative stress, bacterial infections, and cancer.

About the Authors

S. Revathi
Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN)
Indonesia

Seemaisamy Revathi, Researcher

Cibinong city, Bogor, 1691

Tel.: +91–908–053–11–24



E. K. Nasser
Department of Food Science, College of Agriculture, University of Basrah, Basrah Iraq 3 Date Palm Research Centre, University of Basrah
Iraq

Elham K. Nasser, Associate Professor

Basrah, 61004

Tel.: +964–773–491–31–98



H. K. Wafaa
Date Palm Research Centre, University of Basrah
Iraq

H. Khassaf Wafaa, Researcher

Basrah, 61004

Tel.: +964–773–564–00–90



A. B. Altemimi
Department of Food Science, College of Agriculture, University of Basrah
Russian Federation

Ammar B. Altemimi, Associate Professor

Basrah, 61004

Tel.: +964–773–564–00–90



S. Sutikno
Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN)
Indonesia

Sutikno Sutikno, Researcher

Cibinong city, Bogor, 1691

Tel.: +62–898–657–63–00



T. Kartika
Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN)
Indonesia

Titik Kartika, Researcher

Cibinong city, Bogor, 1691

Tel.: +62–812–7072–19–27



I. Guswenrivo
Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN)
Indonesia

Ikhsan Guswenrivo, Researcher

Cibinong city, Bogor, 1691

Tel.: +62–813–1001–97–63



F. H. Awlqadr
Food Science and Quality Control, Halabja Technical College, Sulaimani Polytechnic University
Iraq

Farhang H. Awlqadr, Researcher

P. O. Box: 70–236, Sulaymaniyah

Tel.: +96–477–014–209–62



T. G. Abedelmaksoud
Food Science Department, Faculty of Agriculture, Cairo University
Egypt

Tarek G. Abedelmaksoud, Associate Professor

1, Gamaa Street, Giza, 12613

Tel.: +2–0110–144–12–80



References

1. Gullo, V. P., Hughes, D. E. (2005). Exploiting new approaches for natural product drug discovery in the biotechnology industry. Drug Discovery Today: Technologies, 2(3), 281–286. https://doi.org/10.1016/j.ddtec.2005.08.002

2. Allaith, S. A., Abdel-aziz, M. E., Thabit, Z. A., Altemimi, A. B., Abd El-Ghany, K., Giuffrè, A. M. et al. (2022). Screening and molecular identification of lactic acid bacteria producing β-glucan in boza and cider. Fermentation, 8(8), Article 350. https://doi.org/10.3390/fermentation8080350

3. Thraeib, J. Z., Altemimi, A. B., Jabbar Abd Al-Manhel, A., Abedelmaksoud, T. G., El-Maksoud, A. A. A., Madankar, C. S. et al. (2022). Production and characterization of a bioemulsifier derived from microorganisms with potential application in the food industry. Life, 12(6), Article 924. https://doi.org/10.3390/life12060924

4. Al Bratty, M., Makeen, H. A., Alhazmi, H. A., Syame, S. M., Abdalla, A. N., Homeida, H. E. et al. (2020). Phytochemical, cytotoxic, and antimicrobial evaluation of the fruits of miswak plant, Salvadora persica L. Journal of Chemistry, 2020(1), Article 4521951. https://doi.org/10.1155/2020/4521951

5. Bennour, N., Mighri, H., Eljani, H., Zammouri, T., Akrout, A. (2020). Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. South African Journal of Botany, 129, 181–190. https://doi.org/10.1016/j.sajb.2019.05.005

6. Lawal, H. O., Etatuvie, S. O., Fawehinmi, A. B. (2012). Ethnomedicinal and pharmacological properties of Morinda lucida. Journal of Natural Products, 5, 93–99.

7. Survase, S. A., Annapure, U. S., Singhal, R. S. (2010). The effect of medium supplementation with second carbon source and amino acids for enhanced production of cyclosporin A. Current Trends in Biotechnology and Pharmacy, 4(3), 764–773.

8. Behbahani, B. A., Noshad, M., Falah, F. (2019). Study of chemical structure, antimicrobial, cytotoxic and mechanism of action of Syzygium aromaticum essential oil on foodborne pathogens. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 875–883. https://doi.org/10.5219/1226

9. Altemimi, A.B., Al-Haliem, S.M., Alkanan, Z.T., Mohammed, M.J., Hesarinejad, M.A., Najm, M.A. et al. (2023). Exploring the phenolic profile, antibacterial, and antioxidant properties of walnut leaves (Juglans regia L.). Food Science and Nutrition, 11(11), 6845–6853. https://doi.org/10.1002/fsn3.3554

10. Abedelmaksoud, T. G., Hesarinejad, M. A., Shokrollahi Yancheshmeh, B. (2022). The effect of cold plasma on the enzymatic activity and quality characteristics of mango pulp. Research and Innovation in Food Science and Technology, 10(4), 341–350. https://doi.org/10.22101/JRIFST.2021.247462.1183

11. Labiad, M. H., Harhar, H., Ghanimi, A., Tabyaoui, M. (2017). Phytochemical screening and antioxidant activity of Moroccan Thymus satureioïdes extracts. Journal of Materials and Environmental Sciences, 8(6), 2132–2139.

12. Bahuguna, A., Khan, I., Bajpai, V. K., Kang, S. C. (2017). MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology, 12(2), 115–118. https://doi.org/10.3329/bjp.v12i2.30892

13. Behbahani, B. A., Shahidi, F., Yazdi, F. T., Mortazavi, S. A., Mohebbi, M. (2017). Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. International Journal of Biological Macromolecules, 94, 515–526. https://doi.org/10.1016/j.ijbiomac.2016.10.055

14. Ghribi, F., Bejaoui, S., Zupa, R., Trabelsi, W., Marengo, M., Chetoui, I. et al. (2023). New insight into the toxic effects of lithium in the ragworm Perinereis cultrifera as revealed by lipidomic biomarkers, redox status, and histopathological features. Environmental Science and Pollution Research, 30(26), 68821–68835. https://doi.org/10.1007/s11356-023-27223-7

15. Plaza, B., Haarich, S. N. (2015). The Guggenheim Museum Bilbao: Between regional embeddedness and global networking. European Planning Studies, 23(8), 1456–1475. https://doi.org/10.1080/09654313.2013.817543

16. Ibnouf, E. O., Aldawsari, M. F., Ali Waggiallah, H. (2022). Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi Journal of Biological Sciences, 9(8), Article 103352. https://doi.org/10.1016/j.sjbs.2022.103352

17. Principe, P. P., Fisher, W. S. (2018). Spatial distribution of collections yielding marine natural products. Journal of Natural Products, 81(10), 2307–2320. https://doi.org/10.1021/acs.jnatprod.8b00288

18. Iqbal, K., Iqbal, J., Staerk, D., Kongstad, K. T. (2017). Characterization of antileishmanial compounds from Lawsonia inermis L. leaves using semi-high resolution antileishmanial profiling combined with HPLC-HRMS-SPE-NMR. Frontiers in Pharmacology, 8, Article 337. https://doi.org/10.3389/fphar.2017.00337

19. Mehmood, T., Arshad, H., Nawaz, S., Ullah, A., Hafeez, A., Anwar, F. et al. (2020). Pharmaceutical potential and phenolics profiling of leaves and bark of Calotropis procera in relation to extraction solvents. Pharmaceutical Chemistry Journal, 54(6), 631–641. https://doi.org/10.1007/s11094-020-02250-7

20. Ismaili, H., Milella, L., Fkih-Tetouani, S., Ilidrissi, A., Camporese, A., Sosa, S. et al. (2004). In vivo topical anti-inflammatory and in vitro antioxidant activities of two extracts of Thymus satureioides leaves. Journal of Ethnopharmacology, 91(1), 31–36. https://doi.org/10.1016/j.jep.2003.11.013

21. Gholamshahi, S., Salehi Sardoei, A. (2019). Phenolic compounds and antioxidant activity of plant milkweed (Calotropis Procera). Eco-phytochemical Journal of Medicinal Plants, 7(1), 77–86.

22. Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20), Article 4711. https://doi.org/10.3390/molecules25204711

23. Ibrahim, N. I., Tadj, N. B.M.I., Sarker, Md. M.R., Mohamed, I.N. (2020). The potential mechanisms of the neuroprotective actions of oil palm phenolics: Implications for neurodegenerative diseases. Molecules, 25(21), Article 5159. https://doi.org/10.3390/molecules25215159

24. Al-Rowaily, S. L., Abd-ElGawad, A. M., Assaeed, A. M., Elgamal, A. M., Gendy, A. E.-N. G. E., Mohamed, T. A. et al. (2020). Essential oil of Calotropis procera: Comparative chemical profiles, antimicrobial activity, and allelopathic potential on weeds. Molecules, 25(21), Article 5203. https://doi.org/10.3390/molecules25215203

25. Bouyahya, A., Et-Touys, A., Abrini, J., Talbaoui, A., Fellah, H., Bakri, Y. et al. (2017). Lavandula stoechas essential oil from Morocco as novel source of antileishmanial, antibacterial and antioxidant activities. Biocatalysis and Agricultural Biotechnology, 12, 179–184. https://doi.org/10.1016/j.bcab.2017.10.003

26. Dhouafli, Z., Ben Jannet, H., Mahjoub, B., Leri, M., Guillard, J., Saidani Tounsi, M. et al. (2019). 1, 2, 4-trihydroxynaphthalene‑2-O‑β-D‑glucopyranoside: A new powerful antioxidant and inhibitor of Aβ42 aggregation isolated from the leaves of Lawsonia inermis. Natural Product Research, 33(10), 1406–1414. https://doi.org/10.1080/14786419.2017.1419229

27. Chaibi, R., Drine, S. Ferchichi, A. (2017). Chemical study and biological activities of various extracts from Lawsonia inermis (Henna) seeds. Acta Medica Mediterranea, 33, 981–986.

28. Hasan, K. M., Yesmin, S., Akhter, S. F., Paul, S., Sarker, S., Islam, A. et al. (2016). Hepatoprotective potentiality of various fractions of ethanolic extracts of Lawsonia inermis (henna) leaves against chemical-induced hepatitis in rats. Biochemistry and Molecular Biology, 1(2), 17–22. https://doi.org/10.11648/j.bmb.20160102.12

29. Philip, J. P., Madhumitha, G., Mary, S. A. (2011). Free radical scavenging and reducing power of Lawsonia inermis L. seeds. Asian Pacific Journal of Tropical Medicine, 4(6), 457–461. https://doi.org/10.1016/s1995-7645(11)60125-9

30. Yang, C.-S., Chen, J.-J., Huang, H.-C., Huang, G.-J., Wang, S.-Y., Chao, L.-K. et al. (2017). New flavone and eudesmane derivatives from Lawsonia inermis and their inhibitory activity against NO production. Phytochemistry Letters, 21, 123–127. https://doi.org/10.1016/j.phytol.2017.06.012

31. Altemimi, A. B., Alhelfi, N., Ali, A. A., Pasqualone, A., Fidan, H., Abedelmaksoud, T. G. et al. (2022). Evaluation of baseline cleanliness of food contact surfaces in Basrah Governorate restaurants using ATP‑bioluminescence to assess the effectiveness of HACCP application in Iraq. Italian Journal of Food Science, 34(3), 66–90. https://doi.org/10.15586/ijfs.v34i3.2237

32. Gull, I., Sohail, M., Aslam, M., Athar, M. (2013). Phytochemical, toxicological and antimicrobial evaluation of Lawsonia inermis extracts against clinical isolates of pathogenic bacteria. Annals of Clinical Microbiology and Antimicrobials, 12(1), Article 36. https://doi.org/10.1186/1476-0711-12-36

33. Habbal, O. A., Al-Jabri, A. A., El-Hag, A. H., Al-Mahrooqi, Z. H., Al-Hashmi, N. A. (2005). In-vitro antimicrobial activity of Lawsonia inermis Linn (henna). A pilot study on the Omani henna. Saudi Medical Journal, 26(1), 69–72.

34. Tariq Hussain, T. Arshad, M. Khan, S. Sattar, H, Qureshi, M. S. (2011). In vitro screening of methanol plant extracts for their antibacterial activity. Pakistan Journal of Botany, 43(1), 531–538.

35. Rathi, P. V., Ambhore, D., Jamode, P., Katkar, P., Kamble, P. (2017). Antimicrobial activity of Henna leaves against Staphylococcus aureus and Escherichia coli. World Journal of Pharmacy and Pharmaceutical Sciences, 6(10), 981–990.

36. Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M. et al. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9, Article 1639. https://doi.org/10.3389/fmicb.2018.01639

37. Ali, K. S., Al-Hood, F. A., Obad, K., Alshakka, M. (2016). Phytochemical screening and antibacterial activity of Yemeni Henna (Lawsonia inermis) against some bacterial pathogens. Journal of Pharmaceutical and Biological Sciences, 11(2), 24–27.

38. Boubaya, A., Marzougui, N., Yahia, L. B., Ferchichi, A. (2011). Chemical diversity analysis of Tunisian Lawsonia inermis L. populations. African Journal of Biotechnology, 10(25), 4980–4987.

39. Jain, V.C., Shah, D.P., Sonani, N.G., Dhakara, S., Patel, N. M. (2010). Pharmacognostic and preliminary phytochemical investigation of L leaf. Romanian Journal of Biology — Plant Biology, 55(2), 127–133.

40. Shastry, S., Kiran, U. P., Aswathanarayana, B. J. (2012). Effect of acute and chronic administration of the aqueous extract of Lawsonia inermis leaves on haloperidol induced catalepsy in albino mice. Research Journal of Pharmaceutical Biological and Chemical Sciences, 3(3), 1107–1116.

41. Sharma, R. K., Goel, A., Bhatia, A. K. (2016). Antityphoid activity and phytochemical screening of different extracts of L. inermis plant leaves. International Journal of Current Research, 8(08), 37539–37542.

42. Hussain, T., Bajpai, S., Saeed, M., Moin, A., Alafnan, A., Khan, M. et al. (2018). Potentiating effect of ethnomedicinal plants against proliferation on different cancer cell lines. Current Drug Metabolism, 19(7), 584–595. https://doi.org/10.2174/1389200219666180305144841


Review

For citations:


Revathi S., Nasser E.K., Wafaa H.K., Altemimi A.B., Sutikno S., Kartika T., Guswenrivo I., Awlqadr F.H., Abedelmaksoud T.G. Lawsonia inermis extract: Antibacterial, anticancer and antioxidant properties. Food systems. 2025;8(1):73-80. https://doi.org/10.21323/2618-9771-2025-8-1-73-80

Views: 421


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)