Preview

Food systems

Advanced search

Effect of thermoultrasonic treatment on the antioxidant activity of elderberry (Sambucus nigra L.) juice

https://doi.org/10.21323/2618-9771-2025-8-1-58-72

Abstract

Numerous studies of the chemical composition of black elderberries have shown that they contain biologically active compounds with high antioxidant capacity. The purpose of the work is to study the effect of thermoultrasonic treatment on the content of biologically active substances and antioxidant activity of elderberry (Sambucus nigra L.) juice. The research objects were freshly squeezed elderberry juice, pasteurized elderberry juice, and juice subjected to thermoultrasonic treatment. The color was determined by the calorimetric method, the total content of flavonoids, anthocyanins and antioxidant activity by DPPH radical scavenging activity of the juice samples were determined using a spectrophotometric method. Thermal treatment with ultrasound was carried out in an ultrasonic homogenizer. It has been found that elderberry juice treated with thermoultrasound had a higher color index (CD), juice brightness values (L*), overall color difference (ΔE) and lower values of hue angle (h), yellow index (YI). The total content of phenols, flavonoids and anthocyanins in the sample treated with thermoultrasound with a power of 600 W, frequency of 20 kHz, and a temperature of 65 °С for 15 minutes was higher by 13.32%, 251.72% and 94.12%, respectively, compared to the untreated sample and sample pasteurized at 65 °С for 30 minutes. The 1,1-diphenyl‑2-picrylhydrazyl (DPPH) and hydroxyl radical (·OH) scavenging activities were increased to 65.22% and 51.13%, respectively, which was significantly higher than those of the control sample. The content of the main anthocyanins cyanidin‑3-O‑sambubioside, cyanidin‑3-O‑glucoside and cyanidin‑3-O‑sambubioside‑5-O‑glucoside was 987.5 mg/dm3, 752.4 mg/dm3 and 191.4 mg/dm3. Correlation analysis has shown that the antioxidant content has a significant effect on the color index of elderberry juice, and cyanidin‑3-O‑glucoside and cyanidin‑3-O‑sambubiositol determine the brightness or darkness of the juice. Heat treatment with ultrasound significantly improves the content of total phenolic compounds, flavonoids and anthocyanins, and helps to increase the antioxidant activity of elderberry juice. The results suggest that this method can be an effective method for pasteurizing elderberry juice while maintaining the quality and antioxidant activity.

About the Authors

L. Ch. Burak
BELROSAKVA Limited Liability Company
Belarus

Leonid Ch. Burak, Candidate of Technical Sciences, Director

19, Sharangovich Str., Minsk, 22

Tel.: +375–29–646–65–25



A. P. Zavaley
Joint Limited Liability Vompany “Aromatic”
Belarus

Andrey P. Zavaley, Head of Testing Laboratory

1, Kolkhoznaya Str., Dzherzhinsk, Minsk Region, 222112

Tel.: +375–29–129–01–98



V. V. Yablonskaya
Joint Limited Liability Vompany “Aromatic”
Belarus

Veranika V. Yablonskaya, Chief Technologist

1, Kolkhoznaya Str, Dzherzhinsk, Minsk Region, 222112

Tel.: +375–296–30–30–67



A. N. Sapach
BELROSAKVA Limited Liability Company
Belarus

Alexander N. Sapach, Chemist

19, Sharangovich Str., Minsk, 220018

Tel.: +375–29–756–95–19



References

1. Burak, L. Ch. (2021). Existing food processing methods and their impact on nutritional value and chemical composition. Technologies of the Food and Processing Industry of the Agro-industrial Complex — Healthy Food Products, 3, 59–73. (In Russian) https://doi.org/10.24412/2311-6447-2021-3-59-73

2. Anaya-Esparza, L. M., Velazquez-Estrada, R. M., Roig, A. X., Garcia-Galindo, H. S., Sayago-Ayerdi, S. G., Montalvo-Gonzalez, E. (2017). Thermosonication: An alternative processing for fruit and vegetable juices. Trends in Food Science and Technology, 61, 26–37. https://doi.org/10.1016/j.tifs.2016.11.020

3. Qureshi, T. M., Nadeem, M., Maken, F., Tayyaba, A., Majeed, H., Munir, M. (2020). Influence of ultrasound on the functional characteristics of indigenous varieties of mango (Mangifera indica L.). Ultrasonics Sonochemistry, 4, Article 104987. https://doi.org/10.1016/j.ultsonch.2020.104987

4. Oladunjoye, A. O., Adeboyejo, F. O., Okekunbi, T. A., Aderibigbe, O. R. (2021). Effect of thermosonication on quality attributes of hog plum (Spondias mombin L.) juice. Ultrasonics Sonochemistry, 70, Article 105316. https://doi.org/10.1016/j.ultsonch.2020.105316

5. Nayak, P. K., Chandrasekar, C. M., Kesavan, R. K. (2018). Effect of thermosonication on the quality attributes of star fruit juice. Journal of Food Process Engineering, 41(7), Article e12857. https://doi.org/10.1111/jfpe.12857

6. Liao, H., Jiang, L., Cheng, Y., Liao, X., Zhang, R. (2018). Application of nisinassisted thermosonication processing for preservation and quality retention of fresh apple juice. Ultrason Sonochem, 42, 244–249. https://doi.org/10.1016/j.ultsonch.2017.11.020

7. Sulaiman, A., Farid, M., Silva, F. V. (2017). Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Science and Technology International, 23(3), 265–276. https://doi.org/10.1177/1082013216685484

8. Chavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., Jaiswal, A. K. (2022). Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods, 11(1), Article 122. https://doi.org/10.3390/foods11010122

9. More, P. R., Jambrak, A. R., Arya, S. S. (2022). Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization Trends in Food Science and Technology, 128, 296–315. http://doi.org/10.1016/j.tifs.2022.08.016

10. Fetyan, N. A. H., Salem Attia, T. M. (2020). Water purification using ultrasound waves: Application and challenges. Arab Journal of Basic and Applied Sciences, 27(1), 194–207. http://doi.org/10.1080/25765299.2020.1762294

11. Vujanović, M., Majkić, T., Zengin, G., Beara, I., Cvetanović, A., Mahomoodally, F. M. et al. (2019). Advantages of contemporary extraction techniques for the extraction of bioactive constituents from black elderberry (Sambucus nigra L.) flowers. Industrial Crops and Products, 136, 93–101. https://doi.org/10.1016/j.indcrop.2019.04.058

12. Gomez Mattson, M. L., Corfield, R., Bajda, L., Pérez, O. E., Schebor, C., Salvatori, D. (2021). Potential bioactive ingredient from elderberry fruit: Process optimization for a maximum phenolic recovery, physicochemical characterization, and bioaccesibility. Journal of Berry Research, 11, 51–68. http://doi.org/10.3233/JBR‑200629

13. Burak, L. Ch., Sapach, A. N. (2023). Biologically active substances of elder: Properties, methods of extraction and preservation. Food Systems, 6(1), 80–94. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-1-80-94

14. Najgebauer-Lejko, D., Liszka, K., Tabaszewska, M., Domagała, J. (2021). Probiotic yoghurts with sea buckthorn, elderberry, and sloe fruit purees. Molecules, 26(8), Article 2345. https://doi.org/10.3390/molecules26082345

15. Marțiș (Petruț), G. S., Mureșan, V., Marc (Vlaic), R. M, Mureșan, C. C., Pop, C. R., Buzgău, G. et al. (2021). The physicochemical and antioxidant properties of Sambucus nigra L. and Sambucus nigra Haschberg during growth phases: From buds to ripening. Antioxidants, 10(7), Article 1093. https://doi.org/10.3390/antiox10071093

16. Vujanović, M., Majkić, T., Zengin, G., Beara, I., Tomović, V., Šojić, B. et al. (2020). Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Advances, 10(73), 44805–44814. https://doi.org/10.1039/D0RA09129D

17. Młynarczyk, Walkowiak-Tomczak, Staniek, H., Kidoń, M., Łysiak, G. P. (2020). The content of selected minerals, bioactive compounds, and the antioxidant properties of the flowers and fruit of selected cultivars and wildly growing plants of Sambucus nigra L. Molecules, 25(4), Article 876. https://doi.org/10.3390/molecules25040876

18. Burak, L. Ch. (2022). Use of elderberry (Sambucus nigra L.) in the food industry: Status and future prospects. Overview. Khimiya Rastitel’nogo Syr’ya, 3, 49–69. (In Russian) https://doi.org/10.14258/jcprm.20220310937

19. Ordóñez-Santos, L. E., Martínez-Girón, J., Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96–100. https://doi.org/10.1016/j.foodchem.2017.04.114

20. Walkowiak-Tomczak, D., Czapski, J., Młynarczyk, K. (2017). Assessment of colour changes during storage of elderberry juice concentrate solutions using the optimization method. Acta Scientiarum Polonorum Technologia Alimentaria, 15(3), 299–309. https://doi.org/10.17306/j.afs.2016.3.29

21. Suo, G., Zhou, C., Su, W., Hu, X. (2022). Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage Ultrasonics Sonochemistry, 84, Article 105974. https://doi.org/10.1016/j.ultsonch.2022.105974

22. Qiu, X., Su, J., Nie, J., Zhang, Z., Ren, J., Wang, S. et al. (2024). Effects of thermosonication on the antioxidant capacity and physicochemical, bioactive, microbiological, and sensory qualities of blackcurrant juice. Foods, 13(5), Article 809. https://doi.org/10.3390/foods13050809

23. Deineka, V. I., Oleinits, E. Yu., Pavlov, A. A., Mikheev, A. Yu., Shelepova, O. V., Volkova, O. D., Khlebnikova, E. I. (2020). Determination of anthocyanins of fruits of some plants of the genus Ribes by reversed-phase HPLC and hydrophilic interaction chromatography (HILIC). Khimiya Rastitel’nogo Syr’ya, 1, 81–88. (In Russian) https://doi.org/10.14258/jcprm.2020016331

24. Wang, J., Wang, J., Ye, J. H., Vanga, S. K., Raghavan, V. (2019). Influence of highintensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128–136. https://doi.org/10.1016/j.foodcont.2018.09.007

25. Ruiz-De Anda, D., Ventura-Lara, M.G., Rodríguez-Hernández, G., Ozuna, C. (2019). The impact of power ultrasound application on physicochemical, antioxidant, and microbiological properties of fresh orange and celery juice blend. Journal of Food Measurement and Characterization, 13(4), 3140–3148. https://doi.org/10.1007/s11694-019-00236-y

26. Li, X. S., Zhang, L., Peng, Z. Y., Zhao, Y. Q., Wu, K. Y., Zhou, N. et al. (2020). The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. Food Chemistry, 333, Article 127455. https://doi.org/10.1016/j.foodchem.2020.127455

27. Aadil, R. M., Zeng, X. A., Zhang, Z.-H., Wang, M.-S., Han, Z., Jing, H. et al. (2015). Thermosonication: A potential technique that influences the quality of grapefruit juice. International Journal of Food Science and Technology, 50(5), 1275–1282. https://doi.org/10.1111/ijfs.12766

28. Abid, M., Jabbar, S., Hu, B., Hashim, M. M., Wu, T., Lei, S. C. et al. (2014). Thermosonication as a potential quality enhancement technique of apple juice. Ultrasonics Sonochemistry, 21(3), 984–990. https://doi.org/10.1016/j.ultsonch.2013.12.003

29. Xu, B., Feng, M., Chitrakar, B., Cheng, J., Wei, B., Wang, B. et al. (2023). Multifrequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. Innovative Food Science and Emerging Technologies, 84, Article 103295. https://doi.org/10.1016/j.ifset.2023.103295

30. Adiamo, O. Q., Ghafoor, K., Al-Juhaimi, F., Babiker, E. E., Mohamed Ahmed, I. A. (2018). Thermosonication process for optimal functional properties in carrot juice containing orange peel and pulp extracts. Food Chemistry, 245, 79–88. https://doi.org/10.1016/j.foodchem.2017.10.090

31. Adiamo, O. Q., Ghafoor, K., Al-Juhaimi, F., Mohamed Ahmed, I. A. M., Babiker, E. E. (2017). Effects of thermosonication and orange by-products extracts on quality attributes of carrot (Daucus carota) juice during storage. International Journal of Food Science and Technology, 52(9), 2115–2125. https://doi.org/10.1111/ijfs.13490

32. Thomasi, S. S., de Benedicto, D. F. C., da Conceição Alves, T., Bellete, B. S., Venâncio, T., de Andrade Mattietto, R. et al. (2024). Chemical constituents of açai berry pulp (Euterpe oleracea Mart.) by LC-UV-BPSU/NMR and LC-UV-SPE/ NMR. Natural Product Research, 4, Article 2338805. https://doi.org/10.1080/14786419.2024.2338805

33. da Silveira, T. F. F., Cristianini, M., Kuhnle, G. G., Ribeiro, A. B., Filho, J. T., Godoy, H. T. (2019). Anthocyanins, non-anthocyanin phenolics, tocopherols and antioxidant capacity of acai juice (Euterpe oleracea) as affected by high pressure processing and thermal pasteurization. Innovative Food Science and Emerging Technologies, 55, 88–96. https://doi.org/10.1016/j.ifset.2019.05.001

34. Baron, M., Prusova, B., Tomaskova, L., Kumsta, M., Sochor, J. (2017). Terpene content of wine from the aromatic grape variety ‘Irsai Oliver’ (Vitis vinifera L.) depends on maceration time. Open Life Sciences, 12(1), 42–50. https://doi.org/10.1515/biol‑2017-0005

35. Lafarga, T., Ruiz-Aguirre, I., Abadias, M., Vinas, I., Bobo, G., Aguilo-Aguayo, I. (2019). Effect of thermosonication on the bioaccessibility of antioxidant compounds and the microbiological, physicochemical, and nutritional quality of an anthocyanin-enriched tomato juice. Food and Bioprocess Technology, 12(1), 147–157. https://doi.org/10.1007/s11947-018-2191-5


Review

For citations:


Burak L.Ch., Zavaley A.P., Yablonskaya V.V., Sapach A.N. Effect of thermoultrasonic treatment on the antioxidant activity of elderberry (Sambucus nigra L.) juice. Food systems. 2025;8(1):58-65. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-1-58-72

Views: 317


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)