Preview

Пищевые системы

Расширенный поиск

Профили фенольных соединений, органических кислот, метилксантинов и растворимых сахаров в плаценте какао

https://doi.org/10.21323/2618-9771-2025-8-1-42-48

Аннотация

Рассматривается вопрос получения рыночных какао-бобов из побочных продуктов, считающихся отходами, которые подлежат утилизации на плантациях. В число таких отходов включена растительная плацента, к которой крепятся бобы какао. Целью данного исследования было выявление и количественное определение с помощью ВЭЖХ анализа некоторых метаболитов (фенольных соединений, органических кислот, метилксантинов и растворимых сахаров) в порошках из неферментированной и ферментированной плаценты какао. Профиль фенольных соединений показал их наличие в количестве 14 и 11 в неферментированных и ферментированных экстрактах, соответственно. Представлены основные классы фенольных соединений, а именно, фенольные кислоты, флавоноиды и танины, с добавлением кумарина и гидрохинона. Катехин показал самый высокий уровень содержания — 0,6346 ± 0,0004 мг/кг — в неферментированной плаценте, тогда как в ферментированной плаценте самую высокую концентрацию показали конденсированные танины — 0,0736 ± 0,0005 мг/кг. Что касается органических кислот, анализ профиля посредством ВЭЖХ позволил обнаружить фумаровую, молочную, щавелевую, лимонную, уксусную и винную кислоты. Количественно молочная и уксусная кислоты были основными органическими кислотами в обоих образцах плаценты какао с соответствующим содержанием 5,5179 ± 0,0001 и 1,2036 ± 0,0004 мг/кг в неферментированной плаценте; и 5,6519 ± 0,0004 и 1,3830 ± 0,0003 мг/кг в ферментированной плаценте. Анализ содержания метилксантинов посредством ВЭЖХ показал наличие теобромина и кофеина в неферментированной и ферментированной плаценте. Теобромин был преобладающим метилксантином с долей содержания 0,0975 ± 0,0013 в неферментированной, и 0,0464 ± 0,0004 мг/кг в ферментированной плаценте, соответственно. Что касается растворимых сахаров, ВЭЖХ анализ показал наличие глюкозы, фруктозы и сахарозы в обеих плацентах какао. В ферментированной плаценте фруктоза показала наивысшую концентрацию по причине своей слабой ферментируемости, значительно более низкой, нежели чем у глюкозы. Наличие этих метаболитов, обнаруженных в какао-бобах, дает основания предполагать использование порошка из плаценты какао в качестве ингредиентов при разработке новых производных продуктов питания на основе какао.

Об авторах

К. А. Гуде
Факультет пищевых наук и технологий, Лаборатория биокатализа и биопроцессов, Университет Нанги Аброгуа
Кот-д'Ивуар

Гуде Куадио А. - аспирант, факультет пищевых наук и технологий

Абиджан, 02 BP 801

Тел.: +22–5070–745–54–08



К. Х. Куаме
Факультет науки и техники, Университет Алассана Уаттары
Кот-д'Ивуар

Куаме Коффи Х. - PhD, Ассистент- Профессор

Буаке 01, BPv 18

Тел.: +22–5075–949–40–59



О. Дж. Гботоньон
Факультет пищевых наук и технологий, Лаборатория биокатализа и биопроцессов, Университет Нанги Аброгуа
Кот-д'Ивуар

Гботоньон Оскар Дж. - PhD, ожидает приема на работу, факультет пищевых наук и технологий

Абиджан, 02 BP 801

Тел.: +22–5070–881–94–33



Э. Ж. П. Куадио
Факультет пищевых наук и технологий, Лаборатория биокатализа и биопроцессов, Университет Нанги Аброгуа
Кот-д'Ивуар

Куадио Эжен Ж. П. - PhD, Профессор

Абиджан, 02 BP 801

Тел.: +22–5070–797–20–51



Список литературы

1. Soares, T. E., Oliveira, M. B. P. P. (2022). Cocoa by-products: Characterization of bioactive compounds and beneficial health effects. Molecules, 27(5), Article 1625. https://doi.org/10.3390/molecules27051625

2. Campos-Vega, R., Nieto-Figueroa, K. H. Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science and Technology, 81, 172–184. https://doi.org/10.1016/j.tifs.2018.09.022

3. Llerena, W., Samaniego, I. Vallejo, C., Arreaga, A., Zhunio, B., Coronel, Z. et al. (2023). Profile of bioactive components of cocoa (Theobroma cacao L.) byproducts from Ecuador and evaluation of their antioxidant activity. Food, 12(13), Article 2583. https://doi.org/10.3390/foods12132583

4. Chan, S.-Y., Choo, W.-S. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141(4), 3752–3758. https://doi.org/10.1016/j.foodchem.2013.06.097

5. Botella-Martínez, C., Lucas-Gonzalez, R., Ballester-Costa, C., Pérez-Álvarez, J. Á., Fernández-López, J., Delgado-Ospina, J. et al. (2021). Ghanaian cocoa (Theobroma cacao L.) bean shells coproducts: Effect of particle size on chemical composition, bioactive compound content and antioxidant activity. Agronomy, 11(2), Article 401. https://doi.org/10.3390/agronomy11020401

6. Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E., Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science and Technology, 80, 51–60. https://doi.org/10.1016/j.tifs.2018.07.027

7. Gómez-García, R., Campos, D. A., Aguliar, C. N., Madureira, A. R., Pintado, M. (2021). Valorisation of food agro-industrial by-products: From the past to the present and perspectives. Journal of Environmental Management, 299, Article 113571. https://doi.org/10.1016/j.jenvman.2021.113571

8. Mendoza-Meneses, C. J., Feregrino-Pérez, A. A., Gutiérrez-Antonio, C. (2021). Potential use of industrial cocoa waste in biofuel production. Journal of Chemistry, 2021, Article 3388067. https://doi.org/10.1155/2021/3388067

9. Yapo, B. M., Besson, V., Koubala, B. B., Koffi, K. L. (2013). Adding value to cacao pod husks as a potential antioxidant-dietary fiber source. American Journal of Food and Nutrition, 1 (3), 38–46. https://doi.org/10.12691/ajfn‑1-3-4

10. Indiarto, R., Raihani, Z. R., Dewi, M. P., Aqila, Z. R., Efendi, M. Y. (2021). A review of innovation in the by-products of cocoa bean processing. International Journal of Emerging Trends in Engineering Research, 9(8), 1162–1169. https://doi.org/10.30534/ijeter/2021/22982021

11. Anvoh, K. Y. B., Bi, A. Z., Gnakri, D. (2009). Production and characterization of juice from mucilage of cocoa beans and its transformation into marmalade. Pakistan Journal of Nutrition, 8 (2), 129–133. https://doi.org/10.3923/pjn.2009.129.133

12. Vergara-Mendoza, M., Martínez, G. R., Blanco-Tirado, C., Combariza, M. Y. (2022). Mass balance and compositional analysis of biomass outputs from cacao fruits. Molecules, 27(12), Article 3717. https://doi.org/10.3390/molecules27123717

13. Goude, K. A., Adingra, K. M. D., Gbotognon, O. J., Kouadio, E. J. P. (2019). Biochemical characterization, nutritional and antioxidant potentials of cocoa placenta (Theobroma Cacao L.). Annals. Food Science and Technology, 20(3), 603–613.

14. Wollgast, J., Anklam, E. (2000). Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423–447. https://doi.org/10.1016/S0963-9969(00)00068-5

15. MartÃnez-Pinilla, E., Oñatibia-Astibia, A., Franco, R. (2015). The relevance of theobromine for the beneficial effects of cocoa consumption. Frontiers in Pharmacology, 6, Article 30. https://doi.org/10.3389/fphar.2015.00030

16. Edo, G. I., Samuel, P. O., Oloni, G. O., Ezekiel, G. O., Onoharigho, F. O., Oghenegueke, O. et al. (2023). Review on the biological and bioactive components of cocoa (Theobroma cacao). Insight on food, health and nutrition. Natural Resources for Human Health, 3(4), 426–448. https://doi.org/10.53365/nrfhh/174302

17. Hasib, A., Jaouad, A., Mahrouz, M., Khouili, M. (2002). HPLC determination of organic acids in Moroccan apricot. Ciência e Tecnologia de Alimentos, 3(4), 207–211. https://doi.org/10.1080/11358120209487729

18. Júnior, P. C. G., dos Santos, V. B., Lopes, A. S., de Souza, J. P. T., Pina, J. R. S., Júnior, G. C. A. et al. (2020). Determination of theobromine and caffeine in fermented and unfermented Amazonian cocoa (Theobroma cacao L.) beans using square wave voltammetry after chromatographic separation. Food Control, 108, Article 106887. https://doi.org/10.1016/j.foodcont.2019.106887

19. Rolland, G. (2020). Choix d’une méthode d’extraction et de purification pour le dosage des sucres solubles et de l’amidon dans les tissus ligneux de la vigne. Cahier des Techniques de l’INRA, 100, 39–44. (In French)

20. Jayawardhane, S. A. D. P. S., Edirisinghe, E. N. U., Fernando, M. S. C., Tharangika, H. B. (2021). Development and Validation of a HPLC based analytical method, towards the determination of sugar concentration in processed black tea. Technium BioChemMed, 2(1), 1–11.

21. Md Saad, W. M., Salin, N. S. M., Ramzi, A. S., Salim, F. (2020). Identification and quantification of fructose, glucose and sucrose in watermelon peel juice. Malaysian Journal of Analytical Sciences, 24(3), 382–389.

22. Ali, F., Ranneh, Y., Ismail, A., Esa, N. M. (2015). Identification of phenolic compounds in polyphenols-rich extract of Malaysian cocoa powder using the HPLCUV- ESI — MS/MS and probing their antioxidant properties. Journal of Food Science and Technology, 52(4), 2103–2111. https://doi.org/10.1007/s13197-013-1187-4

23. Urbańska, B., Derewiaka, D., Lenart, A., Kowalska, J. (2019). Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology, 245, 2101–2112. https://doi.org/10.1007/s00217-019-03333-w

24. Acosta-Otálvaro, E., Valencia-Gallego, W., Mazo-Rivas, J. C., García-Viguera, C. (2022). Cocoa extract with high content of flavan 3-ols, procyanidins and methylxanthines. Journal of Food Science and Technology, 59(3), 1152–1161. https://doi.org/10.1007/s13197-021-05119-z

25. Cádiz-Gurrea, M. de la L., Fernández-Ochoa, Á., Leyva-Jiménez, F. J., Guerrero-Muñoz, N., Villegas-Aguilar, M. del C., Pimentel-Moral, S. et al. (2020). Molecules, 25(14), Article 3177. https://doi.org/10.3390/molecules25143177

26. Felice, F., Fabiano, A., De Leo, M., Piras, A. M., Beconcini, D., Cesare, M. M. et al. (2020). Antioxidant effect of cocoa by-product and cherry polyphenol extracts: A comparative study. Antioxidants, 9(2), Article 132. https://doi.org/10.3390/antiox9020132

27. Rojo-Poveda, O., Zeppa, G., Ferrocino, I., Stévigny, C., Barbosa-Pereira, L. (2021). Chemometric classification of cocoa bean shells based on their polyphenolic profile determined by RP-HPLC-PDA analysis and spectrophotometric assays. Antioxidants, 10(10), Article 1533. https://doi.org/10.3390/antiox10101533

28. Rebollo-Hernanz, M., Cañas, S., Taladrid, D., Segovia, Á., Bartolomé, B., Aguilera, Y. et al. (2021). Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Separation and Purification Technology, 270, Article 118779. https://doi.org/10.1016/j.seppur.2021.118779

29. Albertini, B., Schoubben, A., Guarnaccia, D., Pinelli, F., Della Vecchia, M., Ricci, M. et al. (2015). Effect of fermentation and drying on cocoa polyphenols. Journal of Agricultural and Food Chemistry, 63(45), 9948–9953. https://doi.org/10.1021/acs.jafc.5b01062

30. Cortez, D., Quispe-Sanchez, L., Mestanza, M., Oliva-Cruz, M., Yoplac, I., Torres, C. et al. (2023). Changes in bioactive compounds during fermentation of cocoa (Theobroma cacao) harvested in Amazonas-Peru. Current Research in Food Science, 6, Article 100494. https://doi.org/10.1016/j.crfs.2023.100494

31. Camu, N., De Winter, T., Addo, S. K., Takrama, J. S., Bernaert, H., De Vuyst, L. (2008). Fermentation of cocoa beans: Influence of microbial activities and polyphenol concentrations on the flavour of chocolate. Journal of the Science of Food and Agriculture, 88(13), 2288–2297. https://doi.org/10.1002/jsfa.3349

32. do Carmo Brito, B. de N., Campos Chisté, R., da Silva Pena, R., Abreu Gloria, M. B., Santos Lopes, A. (2017). Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chemistry, 228, 484–490. https://doi.org/10.1016/j.foodchem.2017.02.004

33. Fang, Y., Li, R., Chu, Z., Zhu, K., Gu, F., Zhang, Y. (2020). Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Science and Nutrition, 8, 4121–4133. https://doi.org/10.1002/fsn3.1701

34. Melo, T. S., Pires, T. C., Engelmann, J. V. P., Monteiro, A. L. O., Maciel, L. F., Bispo, E. da S. (2021). Evaluation of the content of bioactive compounds in cocoa beans during the fermentation process. Journal of Food Science and Technology, 58(5), 1947–1957. https://doi.org/10.1007/s13197-020-04706-w

35. Tomlins, K. I., Baker, D. M., McDowell, I. J. (1990). HPLC method for the analysis of organic acids, sugars, and alcohol in extracts of fermenting cocoa beans. Chromatographia, 29(11–12), 557–561. https://doi.org/10.1007/bf02261222

36. Holm, C. S., Aston, J. W., Douglas, K. (1993). The effects of the organic acids in cocoa on the flavour of chocolate. Journal of the Science of Food and Agriculture, 61, 67–71. https://doi.org/10.1002/jsfa.2740610111

37. Yang, D., Wu, B., Qin, X., Zhao, X., Zhu, Z., Yan, L. et al. (2024). Quality differences and profiling of volatile components between fermented and unfermented cocoa seeds (Theobroma cacao L.) of Criollo, Forastero and Trinitario in China. Beverage Plant Research, 4, Article e010. https://doi.org/10.48130/bpr‑0024-0002

38. Ramos-Escudero, F., Rojas-García, A., Cádiz-Gurrea, M. de la L., Segura-Carretero, A. (2024). High potential extracts from cocoa byproducts through sonotrode optimal extraction and a comprehensive characterization. Ultrasonics Sonochemistry, 106, Article 106887. https://doi.org/10.1016/j.ultsonch.2024.106887

39. Ho, V. T. T., Zhao, J., Fleet, G. (2015). The effect of lactic acid bacteria on cocoa bean fermentation. International Journal of Food Microbiology, 205, 54–67. https://doi.org/10.1016/j.ijfoodmicro.2015.03.031

40. De Vuyst, L., Leroy, F. (2020). Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiology Reviews, 44(4), 432–453. https://doi.org/10.1093/femsre/fuaa014

41. Ordoñez-Araque, R. H., Landines-Vera, E. F., Urresto-Villegas, J. C., Caicedo-Jaramillo, C. F. (2020). Microorganisms during cocoa fermentation: Systematic review. Food and Raw Materials, 8(1), 155–162. http://doi.org/10.21603/2308-4057-2020-1-155-162

42. Jinap, S., Dimick, P.S. (1990). Acidic characteristic of fermented and dried cocoa beans from different countries of origin. Journal of Food Science, 55, 547–550. https://doi.org/10.1111/j.1365-2621.1990.tb06806.x

43. Schwan, R. F., de Melo Pereira, G. V., Fleet, G. H. (2014). Microbial activities during cocoa fermentation. Chapter in a book: Cocoa and Coffee Fermentations. CRC Press, 2014. https://doi.org/10.1201/b17536-9

44. Ouattara, D. H., Ouattara, H. G., Adom, J. N., Goualié, B. G., Koua, G. A., Doué, G. G. et al. (2016). Screening of lactic acid bacteria capable to breakdown citric acid during Ivorian cocoa fermentation and response of bacterial strains to fermentative conditions. British Biotechnology Journal, 10(3), 1–10. https://doi.org/10.9734/bbj/2016/19279

45. Peña González, M. A., Ortiz Urgiles, J. P., Santander Pérez, F. A., Lazo Vélez, M. A., Caroca Cáceres, R. S. (2023). Physicochemical changes during controlled laboratory fermentation of cocoa (CCN‑51) with the inclusion of fruits and on-farm inoculation. Brazilian Journal of Food Technology, 26, Article e2023013. https://doi.org/10.1590/1981-6723.01323

46. Van de Voorde, D., Díaz-Muñoz, C., Hernandez, C. E., Weckx, S., De Vuyst, L. (2023). Yeast strains do have an impact on the production of cured cocoa beans, as assessed with Costa Rican Trinitario cocoa fermentation processes and chocolates thereof. Frontiers in Microbiology, 14, Article 1232323. https://doi.org/10.3389/fmicb.2023.1232323

47. Bispo, M. S., Veloso, M. C. C., Pinheiro, H. L. C., De Oliveira, R. F. S., Reis, J. O. N., De Andrade, J. B. (2002). Simultaneous determination of caffeine, theobromine, and theophylline by high-performance liquid chromatography. Journal of Chromatographic Science, 40(1), 45–48. https://doi.org/10.1093/chromsci/40.1.45

48. Cabugsa, I. M. G., Won K. R. A. (2016). Fast, reliable and simultaneous determination of theobromine and caffeine in fermented and unfermented cacao beans and in cocoa products using reverse phase HPLC. International of Journal Agriculture Innovations and Research, 4(5), 898–902.

49. Gonzales-Yépez, K. A., Vilela, J. L., Reátegui, O. (2023). Determination of caffeine, theobromine, and theophylline by HPLC-DAD in beverages commonly consumed in Lima, Peru. International Journal of Food Science, 2023, Article 4323645. https://doi.org/10.1155/2023/4323645

50. Pagliari, S., Celano R., Rastrelli L., Sacco E., Arlati F. Labra M. et al. (2022). Extraction of methylxanthines by pressurized hot water extraction from cocoa shell by-product as natural source of functional ingredient. LWT, 170, Article 114115. https://doi.org/10.1016/j.lwt.2022.114115

51. Brunetto, M. d. R., Gutiérrez, L., Delgado, Y., Gallignani, M., Zambrano, A., Gómez, Á. et al. (2007). Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chemistry, 100(2), 459–467. https://doi.org/10.1016/j.foodchem.2005.10.007

52. Peláez, P., Bardón, I., Camasca, P. (2016). Methylxanthine and catechin content of fresh and fermented cocoa beans, dried cocoa beans, and cocoa liquor. Scientia Agropecuaria, 7(4), 355–365. https://doi.org/10.17268/sci.agropecu.2016.04.01

53. Febrianto, N. A., Zhu, F. (2022). Composition of methylxanthines, polyphenols, key odorant volatiles and minerals in 22 cocoa beans obtained from different geographic origins. LWT, 153, Article 112395. https://doi.org/10.1016/j.lwt.2021.112395

54. Calvo, A. M., Botina, B. L., García, M. C., Cardona, W. A., Montenegro, A. C., Criollo, J. (2021). Dynamics of cocoa fermentation and its effect on quality. Scientific Reports, 11(1), Article 16746. https://doi.org/10.1038/s41598-021-95703-2

55. Rohan, T. A., Stewart, T. (1967). The precursors of chocolate aroma: Production of reducing sugars during fermentation of cocoa beans. Journal of Food Science, 32(4), 399–402. http://doi.org/10.1111/j.1365-2621.1967.tb09694.x

56. Gil, M., Llano, S., Jaramillo, Y., Quijano, J., Londono-Londono, J. (2020). Matrix effect on quantification of sugars and mannitol developed during the postharvest of cocoa: An alternative method for traceability of aroma precursors by liquid chromatography with an evaporative detector. Journal of Food Science and Technology, 57(1), 210–221. https://doi.org/10.1007/s13197-019-04049-1

57. Afoakwa, E. O, Kongor, J. E., Takrama, J. F., Budu, A. S. (2013). Changes in acidification, sugars and mineral composition of cocoa pulp during fermentation of pulp pre-conditioned cocoa (Theobroma cacao) beans. International Food Research Journal, 20(3), 1215–1222.

58. Ofosu-Ansah, E., Budu, A. S., Mensah-Brown, H., Takrama, J. F., Afoakwa, E. O. (2013). Changes in nib acidity, proteolysis and sugar concentration as influenced by pod storage and roasting conditions of fermented cocoa (Theobroma cacao) beans. Journal of Food Science Engineering, 3(12), 635–647. http://doi.org/10.17265/2159-5828/2013.12.001

59. Balladares, C., Garca, J., ChezGuaranda, I., Prez, S., Gonzlez, J., Sosa, D. et al. (2016). Physicochemical characterization of Theobroma cacao L. sweatings in Ecuadorian coast. Emirates Journal of Food and Agriculture, 28(10), 741–745. https://doi.org/10.9755/ejfa.2016-02-187

60. Kresnowati, M. T. A. P., Febriami, H. (2016). Mapping the effects of starter culture addition on cocoa bean fermentation. ASEAN Engineering Journal Part B, 5(1), 25–37.

61. Megías-Pérez, R., Grimbs, S., D'Souza, R. N., Bernaert, H., Kuhnert, N. (2018). Profiling, quantification and classification of cocoa beans based on chemometric analysis of carbohydrates using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chemistry, 258, 284–294. https://doi.org/10.1016/j.foodchem.2018.03.026

62. Niemenak, N., Eyamo, J. V. E., Djabou, S. A. M., Tchouatcheu, A. G. M., Bernhardt, C., Lieberei, R. et al. (2020). Assessment of the profile of free amino acids and reducing sugars of cacao beans from local Cameroonian Trinitario (SNK varieties) and Forastero (TIKO varieties) using fermentation-like incubation. Journal of Applied Botany and Food Quality, 93, 321–329. https://doi.org/10.5073/JABFQ.2020.093.039

63. Agyirifo, D. S., Wamalwa, M., Otwe, E. P., Galyuon, I., Runo, S., Takrama, J. et al. (2019). Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon, 5(7), Article e02170. https://doi.org/10.1016/j.heliyon.2019.e02170

64. Puziah, H., Jinap, S., Sharifah, K. S. M., Asbi, A. (1998). Changes in free amino acid, peptide-N, sugar and pyrazine concentration during cocoa fermentation. Journal of the Science of Food Agriculture, 78, 535–542. https://doi.org/10.1002/(SICI)1097–0010(199812)78:4<535:: AID-JSFA151>3.0.CO;2–6

65. Redgwell, R.J., Trovato, V., Curt, D. (2003). Cocoa bean carbohydrates: Roasting-induced changes and polymer interactions. Food Chemistry, 80(4), 511–516. https://doi.org/10.1016/S0308-8146(02)00320-5


Рецензия

Для цитирования:


Гуде К.А., Куаме К.Х., Гботоньон О.Д., Куадио Э.Ж. Профили фенольных соединений, органических кислот, метилксантинов и растворимых сахаров в плаценте какао. Пищевые системы. 2025;8(1):42-48. https://doi.org/10.21323/2618-9771-2025-8-1-42-48

For citation:


Goudé K.A., Kouamé K.H., Gbotognon O.J., Kouadio E.J. Phenolic compounds, organic acids, methylxanthines and soluble sugars profiles in cocoa placenta. Food systems. 2025;8(1):42-48. https://doi.org/10.21323/2618-9771-2025-8-1-42-48

Просмотров: 1052


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)