Optimization of aerobic fermentation for organic waste: Key factors and their impact on the quality of the final product
https://doi.org/10.21323/2618-9771-2025-8-1-36-41
Abstract
In modern economic conditions, waste management and food security are important areas of sustainable development. Currently, there are many technologies for organic waste recycling. One common method of processing is aerobic fermentation. Food waste is difficult to process due to its physicochemical and organoleptic characteristics, unstable composition, high moisture, and various pH values. This significantly limits the choice of processing technologies. One way to improve efficiency is by combining different types of waste. This article analyzes the process of aerobic fermentation of mixed organic waste, and determines the parameters influencing the fermentation process (optimal temperature, presence of oxygen, and microorganisms). The key factors (moisture, acidity, carbon, and nitrogen ratio) influencing the production of a high-quality secondary product with high added value are defined, and the optimal ranges of these factors and methods for improving the conditions for starting the fermentation process of food waste in combination with other organic waste are determined. The scientific research has been conducted since the 1996 study to the present, with particular emphasis on the period 2012–2024. The main results of the study are confirmation that the optimal values of the initial criteria for food waste differ from the acceptable values of other organic waste. The key task in the preparation of organic mass is to determine the optimal ranges of factors and the content of various types of waste depending on the final goal and the choice of secondary product. The key task in preparing organic matter is to determine the optimal ranges of factors and the content of various types of waste depending on the final goal and the choice of secondary product. Information on the optimal indicators of the resulting product is provided. In addition, fermentation patterns and quality requirements for the final product, as well as six basic principles of this process, are found based on the analysis of factors.
About the Authors
R. A. UvarovRussian Federation
Roman A. Uvarov, Candidate of Technical Sciences, Docent, Faculty of Ecotechnologies
Kronverksky pr., 49, lit. A, St. Petersburg, 197101
Tel.: +7–953–165–58–92
A. I. Ermochenko
Russian Federation
Alena I. Ermochenko, Engineer, Faculty of Ecotechnologies
Kronverksky pr., 49, lit. A, St. Petersburg, 197101
Tel.: +7–911–975–79–58
References
1. Kannah, R. Y., Merrylin, J., Devi, T. P., Kavitha, S., Sivashanmugam, P., Kumar, G. et al. (2020). Food waste valorization: Biofuels and value added product recovery. Bioresource Technology Reports, 11, Article 100524. https://doi.org/10.1016/j.biteb.2020.100524
2. Galanakis, C. M., Cvejic, J., Verardo, V., Segura-Carretero, A. (2022). Food use for social innovation by optimizing food waste recovery strategies. Chapter in a book: Innovation strategies in the food industry. Academic Press, 2022. https://doi.org/10.1016/B978-0-323-85203-6.00016-5
3. Dey, T., Bhattacharjee, T., Nag, P., Ritika, Ghati, A., Kuila, A. (2021). Valorization of agro-waste into value added products for sustainable development. Bioresource Technology Reports, 16, Article 100834. https://doi.org/10.1016/j.biteb.2021.100834
4. Santagata, R., Ripa, M., Genovese, A., Ulgiati, S. (2021). Food waste recovery pathways: Challenges and opportunities for an emerging bio-based circular economy. A systematic review and an assessment. Journal of Cleaner Production, 286, Article 125490. https://doi.org/10.1016/j.jclepro.2020.125490
5. Zhu, J., Luo, Z., Sun, T., Li, W., Zhou, W., Wang, X. et al. (2023). Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems. Nature Food, 4(3), 247–256. https://doi.org/10.1038/s43016-023-00710-3
6. Ashokkumar, V., Flora, G., Venkatkarthick, R., SenthilKannan, K., Kuppam, C., Stephy, G. M. et al. (2022). Advanced technologies on the sustainable approaches for conversion of organic waste to valuable bioproducts: Emerging circular bioeconomy perspective. Fuel, 324(Part B), Article 124313. https://doi.org/10.1016/j.fuel.2022.124313
7. Mohajan, H. K. (2021). Cradle to cradle is a sustainable economic policy for the better future. Annals of Spiru Haret University. Economic Series, 21(4), 569–582. https://doi.org/10.26458/21433
8. Yuganova, T.I. (2020). Methodology of assessing the environmental life cycleof municipal solid waste. Сonceptual issues and examples of application. Geoekologiya. Inzheneraya Geologiya, Gidrogeologiya, Geokriologiya, 5, 3–23. (In Russian)] https://doi.org/10.31857/s0869780920050094
9. Uvarov, R., Briukhanov, A., Shalavina, E. (May 25–27, 2016). Study results of mass and nutrient loss in technologies of different composting rate: Case of bedding poultry manure. 15th International scientific conference on engineering for rural development. Latvia University of Agriculture, 2016.
10. Qi, J., Yang, H., Wang, X., Zhu, H., Wang, Z., Zhao, C. et al. (2023). State-of-theart on animal manure pollution control and resource utilization. Journal of Environmental Chemical Engineering, 11(5), Article 110462. https://doi.org/10.1016/j.jece.2023.110462
11. Fomicheva, N.V., Rabinovich, G. Yu., Prutenskaya, E.A., Smirnova, Yu. D. (2021). Microbiologic assessment of accelerated solid-state fermentation of agricultural organic wastes. Proceedings of Universities. Applied Chemistry and Biotechnology, 11(2(37)), 236–243. (In Russian)] https://doi.org/10.21285/2227-2925-2021-11-2-236-243
12. Li, Y., Chen, Z., Peng, Y., Zheng, K., Ye, C., Wan, K. et al. (2020). Changes in aerobic fermentation and microbial community structure in food waste derived from different dietary regimes. Bioresource Technology, 317, Article 123948. https://doi.org/10.1016/j.biortech.2020.123948
13. Bakharev, V. V., Mityashin, G. Y., Stepanova, T. V. (2023). Food security, food waste and food sharing: The conceptual analysis. Food Systems, 6(3), 390–396. https://doi.org/10.21323/2618-9771-2023-6-3-390-396
14. Awasthi, S. K., Sarsaiya, S., Awasthi, M. K., Liu, T., Zhao, J., Kumar, S. et al. (2020). Changes in global trends in food waste composting: Research challenges and opportunities. Bioresource Technology, 299, Article 122555. https://doi.org/10.1016/j.biortech.2019.122555
15. Трухачев, В. И., Злыднев, Н. З., Злыднева, Р. М. (2015). Производство и использование органических удобрений. Аграрный вестник Северного Кавказа, S2, 120–131. Trukhachev, V. I., Zlydnev, N. Z., Zlydneva, R. M. (2015). Organic Fertilizer Manufacturing. Agrarian Bulletin of the North Caucasus, S2, 120–131. (In Russian)]
16. Zhang, X., Zhang, M., Zhang, H., Jiang, Z., Liu, C., Cai, W. (2020). A review on energy, environment and economic assessment in remanufacturing based on life cycle assessment method. Journal of Cleaner Production, 255, Article 120160. https://doi.org/10.1016/j.jclepro.2020.120160
17. Lee, C. H., Park, S. J., Kim, M. S., Yun, S. G., Ko, B. G., Lee, D. B. et al. (2015). Characteristics of compost produced in food waste processing facility. Korean Journal of Agricultural Science, 42(3), 177–181. https://doi.org/10.7744/cnujas.2015.42.3.177 (In Korean)
18. Keener, H. M., Dick, W. A., Hoitink, H. A. J. (2000). Composting and beneficial utilization of composted by-product materials. Chapter in a book: Land application of agricultural, industrial, and municipal by-products. Soil Science Society of America, 2000. https://doi.org/10.2136/sssabookser6.c10
19. Fernandez-Bayo, J. D., Yazdani, R., Simmons, C. W., VanderGheynst, J. S. (2018). Comparison of thermophilic anaerobic and aerobic treatment processes for stabilization of green and food wastes and production of soil amendments. Waste Management, 77, 555–564. https://doi.org/10.1016/j.wasman.2018.05.006
20. Petrunina, I. V., Gorbunova, N. A. (2024). Using the model of closed-loop economy in certain branches of the agro-industrial complex. Food Systems, 7(2), 231-237. (In Russian)] https://doi.org/10.21323/2618-9771-2024-7-2-231-237
21. Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3), 365–373. https://doi.org/10.1016/j.biotechadv.2011.01.008
22. Stentiford, E. I. (1996). Composting control: Principles and practice. Chapter in a book: The Science of Composting, Part, 1. Springer Dordrecht, 1996. https://doi.org/10.1007/978-94-009-1569-5_6
23. Sayara, T., Basheer-Salimia, R., Hawamde, F., Sánchez, A. (2020). Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy, 10(11), Article 1838. https://doi.org/10.3390/agronomy10111838
24. Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12(11), Article 4456. https://doi.org/10.3390/su12114456
25. Hoang, H. G., Thuy, B. T. P., Lin, C., Vo, D. -V. N., Tran, H. T., Bahari, M. B. et al. (2022). The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere, 300, Article 134514. https://doi.org/10.1016/j.chemosphere.2022.134514
26. Karnchanawong, S., Nissaikla, S. (2014). Effects of microbial inoculation on composting of household organic waste using passive aeration bin. International Journal of Recycling of Organic Waste in Agriculture, 3, 113–119. https://doi.org/10.1007/s40093-014-0072-0
27. Koul, B., Yakoob, M., Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, Article 112285. https://doi.org/10.1016/j.envres.2021.112285
28. Caricasole, P., Provenzano, M. R., Hatcher, P. G., Senesi, N. (2010). Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by 13C CPMAS NMR spectroscopy. Bioresource technology, 101(21), 8232–8236. https://doi.org/10.1016/j.biortech.2010.05.095
29. Wang, X., Selvam, A., Wong, J. W. C. (2016). Influence of lime on struvite formation and nitrogen conservation during food waste composting. Bioresource Technology, 217, 227–232. https://doi.org/10.1016/j.biortech.2016.02.117
30. Wang, X., Selvam, A., Chan, M., Wong, J. W. C. (2013). Nitrogen conservation and acidity control during food wastes composting through struvite formation. Bioresource Technology, 147, 17–22. https://doi.org/10.1016/j.biortech.2013.07.060
31. Awasthi, M. K., Selvam, A., Lai, K. M., Wong, J. W. (2017). Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium. Bioresource Technology, 245 (Part A), 665–672. https://doi.org/10.1016/j.biortech.2017.09.014
32. Kumar, M., Ou, Y. -L., Lin, J. -G. (2010). Co-composting of green waste and food waste at low C/N ratio. Waste Management, 30(4), 602–609. https://doi.org/10.1016/j.wasman.2009.11.023
33. Chang, J. I., Chen, Y. J. (2010). Effects of bulking agents on food waste composting. Bioresource Technology, 101(15), 5917–5924. https://doi.org/10.1016/j.biortech.2010.02.042
34. Nguyen, M. K., Lin, C., Hoang, H. G., Sanderson, P., Dang, B. T., Bui, X. T. et al. (2022). Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere, 299, Article 134488. https://doi.org/10.1016/j.chemosphere.2022.134488
35. Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Ismail, I. M. I., Rashid, M. I. (2018). Optimization of food waste compost with the use of biochar. Journal of Environmental Management, 216, 70–81. https://doi.org/10.1016/j.jenvman.2017.06.015
36. Hamid, H. A., Qi, L. P., Harun, H., Sunar, N. M., Ahmad, F. H., Muhamad, M. S. et al. (2019). Development of organic fertilizer from food waste by composting in UTHM campus Pagoh. Journal of Applied Chemistry and Natural Resources, 1(1), 1–6.
37. Chaher, N. E. H., Chakchouk, M., Engler, N., Nassour, A., Nelles, M., Hamdi, M. (2020). Optimization of food waste and biochar in-vessel co-composting. Sustainability, 12(4), Article 1356. https://doi.org/10.3390/su12041356
38. Siles-Castellano, A. B., López, M. J., Jurado, M. M., Suárez-Estrella, F., López-González, J. A., Estrella-González, M. J. et al. (2020). Industrial composting of low carbon/nitrogen ratio mixtures of agri-food waste and impact on compost quality. Bioresource Technology, 316, Article 123946. https://doi.org/10.1016/j.biortech.2020.123946
39. Zhou, Y., Selvam, A., Wong, J. W. C. (2018). Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresource Technology, 249, 182–188. https://doi.org/10.1016/j.biortech.2017.09.212
40. Sundberg, C., Franke-Whittle, I. H., Kauppi, S., Yu, D., Romantschuk, M., Insam, H. et al. (2011). Characterisation of source-separated household waste intended for composting. Bioresource Technology, 102(3), 2859–2867. https://doi.org/10.1016/j.biortech.2010.10.075
41. Chang, H. -q., Zhu, X. -h., Wu, J., Guo, D. -y., Zhang, L. -h., Feng, Y. (2021). Dynamics of microbial diversity during the composting of agricultural straw. Journal of Integrative Agriculture, 20(5), 1121–1136. https://doi.org/10.1016/S2095-3119(20)63341-X
42. Pane, C., Sorrentino, R., Scotti, R., Molisso, M., Di Matteo, A., Celano, G. et al. (2020). Alpha and beta-diversity of microbial communities associated to plant disease suppressive functions of on-farm green composts. Agriculture, 10(4), Article 113. https://doi.org/10.3390/agriculture10040113
43. Li, P., Lin, W., Liu, X., Wang, X., Luo, L. (2016). Environmental factors affecting microbiota dynamics during traditional solid-state fermentation of Chinese Daqu starter. Frontiers in Microbiology, 7, Article 1237. https://doi.org/10.3389/fmicb.2016.01237
44. Li, Z., Lu, H., Ren, L., He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), 1247–1257. https://doi.org/10.1016/j.chemosphere.2013.06.064
45. Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., Alami, I. T. (2018). Composting parameters and compost quality: A literature review. Organic Agriculture, 8, 141–158. https://doi.org/10.1007/s13165-017-0180-z
46. Iannotti, D. A., Pang, T., Toth, B. L., Elwell, D. L., Keener, H. M., Hoitink, H. A. J. (1993). A quantitative respirometric method for monitoring compost stability. Compost Science and Utilization, 1(3), 52–65. https://doi.org/10.1080/1065657X.1993.10757890
47. Zucconi, F., Pera, A., Forte, M., de Bertoldi, M. (1981). Evaluating toxicity of immature compost. BioCycle, 22, 54–57.
48. Oshins, C., Michel, F., Louis, P., Richard, T. L., Rynk, R. (2022). The composting process. Chapter in a book: The composting handbook. Academic Press, 2022. https://doi.org/10.1016/B978-0-323-85602-7.00008-X
Review
For citations:
Uvarov R.A., Ermochenko A.I. Optimization of aerobic fermentation for organic waste: Key factors and their impact on the quality of the final product. Food systems. 2025;8(1):36-41. https://doi.org/10.21323/2618-9771-2025-8-1-36-41