Preview

Food systems

Advanced search

Chemical contaminants entering food products from polymer packaging. Review

https://doi.org/10.21323/2618-9771-2025-8-1-29-35

Abstract

The paper presents a review of scientific literature devoted to the problem of food product contamination with various types of substances from packaging materials. The problem under consideration is large-scale — there are many types of compounds that can enter food products from packaging. Food product contamination can occur due to migration of substances used for production of packaging materials. Plastic polymer packages represent the highest risk of food product contamination. The interest of the scientific community and the need for studying the described theme are determined by the fact that the prevailing proportion of all compounds that migrate into a food product from packaging possesses toxic or carcinogenic activity, and thus, presents the potential risk for human health. Bisphenols are most studied among all contaminants described in this paper. Many studies on their migration into food products have shown that bisphenols were found practically in all types of food products: meat, dairy, fish, fruit and vegetable. The significant migration of bisphenols has been observed in juice products and bottled water. Due to the adverse effect of bisphenol A on the human body, its use in the production of packaging materials for food products is forbidden. However, this ban has led to distribution of analogs, namely, bisphenols B, C, F, AF and others, which are found in food products. The performed review has shown that the problem of food product contamination with contaminants from packaging materials requires serious attention of the scientific community.

About the Authors

D. A. Utyanov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Dmitry A. Utyanov, Candidate of Technical Sciences, Scientific Worker, Laboratory of Scientific and Methodical Work, Biological and Analytical Research

26, Talalikhina str., 109316, Moscow

Tel.: +7–495–676–79–61



N. L. Vostrikova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Natalia L. Vostrikova, Doctor of Technical Sciences, Head of the Research Testing Center

26, Talalikhina str., 109316, Moscow

Tel.: +7495–676–95–11



E. R. Vasilevskaya
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Ekaterina R. Vasilevskaya, Candidate of Technical Sciences, Scientific Worker, Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin

26, Talalikhina str., 109316, Moscow

Tel.: +7–495–676–79–61



A. V. Kulikovskii
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Andrey V. Kulikovskii, Candidate of Technical Sciences, Head of Laboratory of Scientific and Methodical Work, Biological and Analytical Research

26, Talalikhina str., 109316, Moscow

Tel.: +7–495–676–60–11



S. Yu. Karabanov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Sergey Yu. Karabanov, Candidate of Vet. Sciences, Scientific Worker, Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin

26, Talalikhina str., 109316, Moscow

Tel.: +7–495–676–79–61



References

1. Ibrahim, Yu. S., Anuar, S. T., Azmi, A. A., Khalik, W. M. A. W. M., Lehata, S., Hamzah, S. R. et al. (2021). Detection of microplastics in human colectomy specimens. JGH Open,5(1), 116–121. https://doi.org/10.1002/jgh3.12457

2. Hu, C. J., Garcia, M. A., Nihart, A., Liu, R., Yin, L., Adolphi, N. et al. (2024). Microplastic presence in dog and human testis and its potential association with sperm count and weights of testis and epididymis. Toxicological Sciences, 200(2), 235–240. https://doi.org/10.1093/toxsci/kfae060

3. Qin, X., Cao, M., Peng, T., Shan, H., Lian, W., Yu, Y. et al. (2024). Features, potential invasion pathways, and reproductive health risks of microplastics detected in human uterus. Environmental Science and Technology, 58(24), 10482–10493. https://doi.org/10.1021/acs.est.4c01541

4. Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O. et al. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, Article 106274. https://doi.org/10.1016/j.envint.2020.106274

5. Amato-Lourenço, L. F., Carvalho-Oliveira, R., Ribeiro Júnior, G., Galvão, L. dos S., Ando, R. A., Mauad, T. (2021). Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials. 416, Article 126124. https://doi.org/10.1016/j.jhazmat.2021.126124

6. Yang, Q., Peng, Y., Wu, X., Cao, X., Zhang, P., Liang, Z. et al. (2025). Microplastics in human skeletal tissues: Presence, distribution and health implications. Environment International, 196, Article 19316. https://doi.org/10.1016/j.envint.2025.109316

7. Zhan, W., Rhim, J.-W. (2022). Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packaging and Shelf Life, 31, Article 100806. https://doi.org/10.1016/j.fpsl.2021.100806

8. Bampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Dusemund, B., Durjava, M. F. et al. (2021). Safety and efficacy of a feed additive consisting of titanium dioxide for all animal species (Kronos International, Inc.). EFSA Journal, 19(6), Article e06630. https://doi.org/10.2903/j.efsa.2021.6630

9. Naves, M. P. C., de Morais, C. R., Silva, A. C. A., Dantas, N. O., Spanó, M. A., de Rezende, A. A. A. (2018). Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 112, 273–281. https://doi.org/10.1016/j.fct.2017.12.040

10. Shi, J., Han, S., Zhang, J., Liu, Y., Chen, Z., Jia, G. (2022). Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NanoImpact, 25, Article 100377. https://doi.org/10.1016/j.impact.2021.100377

11. Wu, Y., Chen, L., Chen, F., Zou, H., Wang, Z. (2020). A key moment for TiO2: Prenatal exposure to TiO2 nanoparticles may inhibit the development of offspring. Ecotoxicology and Environmental Safety, 202, Article 110911. https://doi.org/10.1016/j.ecoenv.2020.110911

12. El Yamani, N., Rubio, L., García-Rodríguez, A., Kažimírová, A., Rundén-Pran, E., Magdalena, B. et al. (2022). Lack of mutagenicity of TiO2 nanoparticles in vitro despite cellular and nuclear uptake. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 882, Article 503545. https://doi.org/10.1016/j.mrgentox.2022.503545

13. Bastardo-Fernández, I., Chekri, R., Oster, C., Thoury, V., Fisicaro, P., Jitaru, P. et al. (2024). Assessment of TiO2 (nano)particles migration from food packaging materials to food simulants by single particle ICP-MS/MS using a high efficiency sample introduction system. NanoImpact, 34, Article 100503. https://doi.org/10.1016/j.impact.2024.100503

14. Yang, Ch., Zhu, B., Wang, J., Qin, Yu. (2019). Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. International Journal of Biological Macromolecules, 139, 85–93. https://doi.org/10.1016/j.ijbiomac.2019.07.151

15. Bertoldi, C., Pena, A. de C. C., Dallegrave, A., Fernandes, A. N., Gutterres, M. (2020). Photodegradation of emerging contaminant 2-(tiocyanomethylthio) benzothiazole (TCMTB) in aqueous solution: Kinetics and transformation products. Bulletin of Environmental Contamination and Toxicology, 105(3), 443–439. https://doi.org/10.1007/s00128-020-02954-2

16. Hansen, A., Brans, R., Sonsmann, F. (2021). Allergic contact dermatitis to rubber accelerators in protective gloves: Problems, challenges and solutions for occupational skin protection. Allergologie Select, 5, 335–344. https://doi.org/10.5414/ALX02265E

17. Gao, W., Cheng, Y., Ni, Y., Wu, A., Song, S., Kuang, H. et al. (2024). Immunochromatographic assay for detection (2-benzothiazolylthio) methyl thiocyanate in food packaging paper materials. Food Bioscience, 60, Article 104260. https://doi.org/10.1016/j.fbio.2024.104260

18. Glenn, G., Shogren, R., Jin, X., Orts, W., Hart-Cooper, W., Olson, L. (2021). Perand polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2596–2625. https://doi.org/10.1111/1541-4337.12726

19. Carnero, A. R., Lestido-Cardama, A., Loureiro, P. V., Barbosa-Pereira, L., de Quirós, A. R. B., Sendón, R. (2021). Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food. Foods, 10(7), Article 1443. https://doi.org/10.3390/foods10071443

20. Hepburn, E., Madden, C., Szabo, D., Coggan, T. L., Clarke, B., Currell, M. (2019). Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environmental Pollution, 248, 101–113. https://doi.org/10.1016/j.envpol.2019.02.018

21. Ateia, M., Maroli, A., Tharayil, N., Karanfil, T. (2019). The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 220, 866–882. https://doi.org/10.1016/j.chemosphere.2018.12.186

22. Schaider, L. A., Balan, S. A., Blum, A., Andrews, D. Q., Strynar, M. J., Dickinson, M. E. et al. (2017). Fluorinated compounds in U. S. Fast food packaging. Environmental Science and Technology Letters, 4(3), 105–111. https://doi.org/10.1021/acs.estlett.6b00435

23. Barry, V., Winquist, A., Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environmental Health Perspectives, 121(11–12), 1313–1318. https://doi.org/10.1289/EHP.1306615

24. Dueñas-Mas, M. J., Ballesteros-Gómez, A., de Boer, J. (2023). Determination of several PFAS groups in food packaging material from fast-food restaurants in France. Chemosphere, 339, Article 139734 https://doi.org/10.1016/j.chemosphere.2023.139734

25. Alin, J., Hakkarainen, M. (2010). Type of polypropylene material significantly influences the migration of antioxidants from polymer packaging to food simulants during microwave heating. Journal of Applied Polymer Science, 118(2), 1084–1093. https://doi.org/10.1002/app.32472

26. Díaz-Galiano, F. J., Gómez-Ramos, M. J., Beraza, I., Murcia-Morales, M., Fernández-Alba, A. R. (2023). Cooking food in microwavable plastic containers: In situ formation of a new chemical substance and increased migration of polypropylene polymers. Food Chemistry, 417, Article 135852. https://doi.org/10.1016/j.foodchem.2023.135852

27. Bauer, A., Jesús, F., Ramos, M.J.G., Lozano, A., Fernández-Alba, A. R. (2019). Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry. Food Chemistry, 295, 274–288. https://doi.org/10.1016/j.foodchem.2019.05.105

28. Fang, H., Wang, J., Lynch, R. A. (2017). Migration of di(2-ethylhexyl)phthalate (DEHP) and di-nbutylphthalate (DBP) from polypropylene food containers. Food Control, 73(Part B), 1298–1302. https://doi.org/10.1016/j.foodcont.2016.10.050

29. Lau, O.-W., Wong, S.-K. (2000). Contamination in food from packaging material. Journal of Chromatography A, 882(1–2), 255–270. https://doi.org/10.1016/S0021-9673(00)00356-3

30. Duty, S. M., Calafat, A. M., Silva, M. J., Ryan, L., Hauser, R. (2005). Phthalate exposure and reproductive hormones in adult men. Human Reproduction, 20(3), 604–610. https://doi.org/10.1093/humrep/deh656

31. Latini, G., Del Vecchio, A., Massaro, M., Verrotti, A., De Felice, C. (2006). Phthalate exposure and male infertility. Toxicology, 226(2–3), 90–98. https://doi.org/10.1016/j.tox.2006.07.011

32. Singh, S., Li, S. S.-L. (2011). Phthalates: Toxicogenomics and inferred human diseases. Genomics, 97(3), 148–157. https://doi.org/10.1016/j.ygeno.2010.11.008

33. Heudorf, U., Mersch-Sundermann, V., Angerer, J. (2007). Phthalates: Toxicology and exposure. International Journal of Hygiene and Environmental Health, 210(5), 623–634. https://doi.org/10.1016/j.ijheh.2007.07.011

34. Wang, Y., Qian, H. (2021). Phthalates and their impacts on human health. Healthcare, 9(5), Article 603. https://doi.org/10.3390/healthcare9050603

35. Pack, E. C., Lee, K. Y., Jung, J. S., Jang, D. Y., Kim, H. S., Koo, Y. L. et al. (2021). Determination of the migration of plastic additives and non-intentionally added substances into food simulants and the assessment of health risks from convenience food packaging. Food Packaging and Shelf Life, 30, Article 100736. https://doi.org/10.1016/j.fpsl.2021.100736

36. Alin, J., Hakkarainen, M. (2013). Combined chromatographic and mass spectrometric toolbox for fingerprinting migration from PET tray during microwave heating. Journal of Agricultural and Food Chemistry, 61(6), 1405–1415. https://doi.org/10.1021/jf3047847

37. Aznar, M., Domeño, C., Osorio, J., Nerin, C. (2020). Release of volatile compounds from cooking plastic bags under different heating sources. Food Packaging and Shelf Life, 26, Article 100552. https://doi.org/10.1016/j.fpsl.2020.100552

38. SCICOM. (2009). Migration de 4-méthylbenzophénone de l’emballage en carton imprimé vers les céréales de petit déjeuner (dossier 2009/05) Conseil urgent validé par le Comité scientifique le 16/02/2009 Retrieved from https://scicom.favvafsca.be/comitescientifique/avis/2009/_documents/CONSEILurgent_05-2009_FR_DOSSIER2009-05.pdf Accessed September 12, 2024.

39. UN System Chief Executives Board for Coordination. High-Level Committee on Management. Human Resources Network (2009). Conclusions of the meeting of the Human Resources Network, 17th session (UNWTO, Madrid, 4–6 March 2009): Chief Executives Board for Coordination. Retrieved from https://digitallibrary.un.org/record/3921446?v=pdf Accessed September 12, 2024.

40. Momo, F., Fabris, S., Stevanato, R. (2007). Interaction of isopropylthioxanthone with phospholipid liposomes. Biophysical Chemistry, 127(1–2), 36–40. https://doi.org/10.1016/j.bpc.2006.12.002

41. Peijnenburg, A., Riethof-Poortman, J., Bayku, H., Portier, L., Bovee, T., Hoogenboom R. (2010). AhR‑agonistic, anti-androgenic, and anti-estrogenic potencies of 2-isopropylthioxanthone (ITX) as determined by in vitro bioassays and gene expression profiling. Toxicology in Vitro, 24(6), 1619–1628. https://doi.org/10.1016/j.tiv.2010.06.004

42. Rhodes, M. С., Bucher, J. R., Peckham, J. C., Kissling, G. E., Hejtmancik, M. R., Chhabra, R. S. (2007). Carcinogenesis studies of benzophenone in rats and mice. Food and Chemical Toxicology, 45(5), 843–851. https://doi.org/10.1016/j.fct.2006.11.003

43. Hsieh, M. H., Grantham, E. C., Liu, B., Macapagal, R., Willingham, E., Baskin, L. S. (2007). In utero exposure to benzophenone‑2 causes hypospadias through an estrogen receptor dependent mechanism. Journal of Urology, 178(4S), 1637–1642. https://doi.org/10.1016/j.juro.2007.03.190

44. Jeon, H.-K., Sarma, S.N., Kim, Y.-J., Ryu, J.-C. (2008). Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology, 248(2–3), 89–95. https://doi.org/10.1016/j.tox.2008.02.009

45. Ji, S., Zhang, J., Tao, G., Peng, C., Sun, Y., Hou, R. et al. (2019). Influence of heating source on the migration of photoinitiators from packaging materials into Tenax® and popcorn. Food Packaging and Shelf Life, 21, Article 100340. https://doi.org/10.1016/j.fpsl.2019.100340

46. Liang, Q., Wang, Z., Du, W., Liu, W., Cao, J., Ren, J. et al. (2022). Determination of 18 photoinitiators in food paper packaging materials by FastPrep-based extraction combined with GC–MS. Food Chemistry, 377, Article 131980. https://doi.org/10.1016/j.foodchem.2021.131980

47. Abril, C., Santos, J. L., Martin, J., Aparicio, I., Alonso, E. (2020). Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. Science of the Total Environment, 711, Article 135048. https://doi.org/10.1016/j.scitotenv.2019.135048

48. Macczak, A., Cyrkler, M., Bukowska, B., Michalowicz, J. (2017). Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Toxicology in Vitro, 41, 143–149. https://doi.org/10.1016/j.tiv.2017.02.018

49. Zhang, Y.-F., Ren, X.-M., Li, Y.-Y., Yao, X.-F., Li, C.-H., Qin, Z.-F. et al. (2018). Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environmental Pollution, 237, 1072–1079. https://doi.org/10.1016/j.envpol.2017.11.027

50. Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y.-L., Wu, Y. et al. (2016). Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity-A review. Environmental Science and Technology, 50(11), 5438–5453. https://doi.org/10.1021/acs.est.5b05387

51. Huang, Z., Zhao, J.-L., Yang, Y.-Y., Jia, Y.-W., Zhang, Q.-Q., Chen, C.-E. et al. (2020). Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers.. Environmental Pollution, 263(Part B), Article 114361. https://doi.org/10.1016/j.envpol.2020.114361

52. Yan, Z., Liu, Y., Yan, K., Wu, S., Han, Z., Guo, R. et al. (2017). Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere, 184, 318–328. https://doi.org/10.1016/j.chemosphere.2017.06.010

53. Zhao, X., Qiu, W., Zheng, Y., Xiong, J., Gao, C., Hu, S. (2019). Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 180, 43–52. https://doi.org/10.1016/j.ecoenv.2019.04.083

54. Jin, H., Xie, J., Mao, L., Zhao, M., Bai, X., Wen, J. et al. (2020). Bisphenol analogue concentrations in human breast milk and their associations with postnatal infant growth. Environmental Pollution, 259, Article 113779. https://doi.org/10.1016/j.envpol.2019.113779

55. Li, A., Zhuang, T., Shi, W., Liang, Y., Liao, C., Song, M. et al (2020). Serum concentration of bisphenol analogues in pregnant women in China. Science of The Total Environment, 707, Article 136100. https://doi.org/10.1016/j.scitotenv.2019.136100

56. Mendy, A., Salo, P. M., Wilkerson, J., Feinstein, L., Ferguson, K. K., Fessler, M. B. et al. (2020). Association of urinary levels of bisphenols F and S used as bisphenol A substitutes with asthma and hay fever outcomes. Environmental Pollution, 183, Article 108944. https://doi.org/10.1016/j.envres.2019.108944

57. Cano-Nicolau, J., Valliant, C., Pellegrini, E., Charlier, T. D., Kah, O., Coumailleau, P. (2016). Estrogenic effects of several BPA analogs in the developing zebrafish brain. Frontiers in Neuroscience, 10, Article 112. https://doi.org/10.3389/fnins.2016.00112

58. Mokra, K., Kuźmińska-Surowaniec, A., Woźniak, K., Michałowicz, J. (2017). Evaluation of DNA‑damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food and Chemical Toxicology, 100, 62–69. https://doi.org/10.1016/j.fct.2016.12.003

59. Ali, N. F. M., Sajid, M., Abd Halim, W. I. T., Mohamed, A. H., Zain, N. N. M., Kamaruzaman, S. et. al. (2023). Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: An updated review. Microchemical Journal, 184(Part A), Article 108158. https://doi.org/10.1016/j.microc.2022.108158

60. Yang, C., Wang, Y., Dong, P. Z., Li, Y., Pang, Y.-H. (2024). Determination of bisphenols in food and its contact materials migration by magnetic solid-phase extraction coupled with LC–MS/MS. Food Bioscience, 59, Article 104179. https://doi.org/10.1016/j.fbio.2024.104179

61. Guan, S., Wu, H., Yang, L., Wang, Z., Wu, J. (2020). Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. Journal of Separation Science, 43(19), 3775–3784. https://doi.org/10.1002/jssc.202000616

62. Tian, L., Zheng J., Pineda, M., Yargeau, V., Furlong, D., Chevrier J. et al. (2022). Targeted screening of 11 bisphenols and 7 plasticizers in food composites from Canada and South Africa. Food Chemistry, 385, Article 132675. https://doi.org/10.1016/j.foodchem.2022.132675

63. Khan, M. R., Ouladsmane, M., Alammari, A. M., Azam, M. (2021). Bisphenol A leaches from packaging to fruit juice commercially available in markets. Food Packaging and Shelf Life, 28, Article 100678. https://doi.org/10.1016/j.fpsl.2021.100678

64. Cunha, S. C., Fernandes, J. O. (2013). Assessment of bisphenol A and bisphenol B in canned vegetables and fruits by gas chromatography — mass spectrometry after QuEChERS and dispersive liquid–liquid microextraction. Food Control, 33(2), 549–555. https://doi.org/10.1016/j.foodcont.2013.03.028

65. Kumar, A., Singh, D., Bhandari, R., Malik, A. K., Kaur, S., Singh, B. (2023). Bisphenol A in canned soft drinks, plastic-bottled water, and household water tank from Punjab, India. Journal of Hazardous Materials Advances, 9, Article 100205. https://doi.org/10.1016/j.hazadv.2022.100205

66. Wang, Qi., Kaur, Y., Wu, Y., Li, S., Bai, H., Zhou, Q. (2023). β-Cyclodextrin functionalized magnetic polyamine-amine dendrimers for high enrichment and effective analysis of trace bisphenolic pollutants in beverages. Chemosphere, 328, Article 138537. https://doi.org/10.1016/j.chemosphere.2023.138537

67. Yao, K., Zhang, J., Niu, Y., Zhang, X., Yang, Y., Wu, Y. et al. (2023). Multi-immunoaffinity column for the simultaneous analysis of bisphenol A and its analogues in Chinese foods by liquid chromatography tandem mass spectrometry. Food Chemistry, 422, Article 136295. https://doi.org/10.1016/j.foodchem.2023.136295


Review

For citations:


Utyanov D.A., Vostrikova N.L., Vasilevskaya E.R., Kulikovskii A.V., Karabanov S.Yu. Chemical contaminants entering food products from polymer packaging. Review. Food systems. 2025;8(1):29-35. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-1-29-35

Views: 393


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)