Chemical contaminants entering food products from polymer packaging. Review
https://doi.org/10.21323/2618-9771-2025-8-1-29-35
Abstract
The paper presents a review of scientific literature devoted to the problem of food product contamination with various types of substances from packaging materials. The problem under consideration is large-scale — there are many types of compounds that can enter food products from packaging. Food product contamination can occur due to migration of substances used for production of packaging materials. Plastic polymer packages represent the highest risk of food product contamination. The interest of the scientific community and the need for studying the described theme are determined by the fact that the prevailing proportion of all compounds that migrate into a food product from packaging possesses toxic or carcinogenic activity, and thus, presents the potential risk for human health. Bisphenols are most studied among all contaminants described in this paper. Many studies on their migration into food products have shown that bisphenols were found practically in all types of food products: meat, dairy, fish, fruit and vegetable. The significant migration of bisphenols has been observed in juice products and bottled water. Due to the adverse effect of bisphenol A on the human body, its use in the production of packaging materials for food products is forbidden. However, this ban has led to distribution of analogs, namely, bisphenols B, C, F, AF and others, which are found in food products. The performed review has shown that the problem of food product contamination with contaminants from packaging materials requires serious attention of the scientific community.
About the Authors
D. A. UtyanovRussian Federation
Dmitry A. Utyanov, Candidate of Technical Sciences, Scientific Worker, Laboratory of Scientific and Methodical Work, Biological and Analytical Research
26, Talalikhina str., 109316, Moscow
Tel.: +7–495–676–79–61
N. L. Vostrikova
Russian Federation
Natalia L. Vostrikova, Doctor of Technical Sciences, Head of the Research Testing Center
26, Talalikhina str., 109316, Moscow
Tel.: +7495–676–95–11
E. R. Vasilevskaya
Russian Federation
Ekaterina R. Vasilevskaya, Candidate of Technical Sciences, Scientific Worker, Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin
26, Talalikhina str., 109316, Moscow
Tel.: +7–495–676–79–61
A. V. Kulikovskii
Russian Federation
Andrey V. Kulikovskii, Candidate of Technical Sciences, Head of Laboratory of Scientific and Methodical Work, Biological and Analytical Research
26, Talalikhina str., 109316, Moscow
Tel.: +7–495–676–60–11
S. Yu. Karabanov
Russian Federation
Sergey Yu. Karabanov, Candidate of Vet. Sciences, Scientific Worker, Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin
26, Talalikhina str., 109316, Moscow
Tel.: +7–495–676–79–61
References
1. Ibrahim, Yu. S., Anuar, S. T., Azmi, A. A., Khalik, W. M. A. W. M., Lehata, S., Hamzah, S. R. et al. (2021). Detection of microplastics in human colectomy specimens. JGH Open,5(1), 116–121. https://doi.org/10.1002/jgh3.12457
2. Hu, C. J., Garcia, M. A., Nihart, A., Liu, R., Yin, L., Adolphi, N. et al. (2024). Microplastic presence in dog and human testis and its potential association with sperm count and weights of testis and epididymis. Toxicological Sciences, 200(2), 235–240. https://doi.org/10.1093/toxsci/kfae060
3. Qin, X., Cao, M., Peng, T., Shan, H., Lian, W., Yu, Y. et al. (2024). Features, potential invasion pathways, and reproductive health risks of microplastics detected in human uterus. Environmental Science and Technology, 58(24), 10482–10493. https://doi.org/10.1021/acs.est.4c01541
4. Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O. et al. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, Article 106274. https://doi.org/10.1016/j.envint.2020.106274
5. Amato-Lourenço, L. F., Carvalho-Oliveira, R., Ribeiro Júnior, G., Galvão, L. dos S., Ando, R. A., Mauad, T. (2021). Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials. 416, Article 126124. https://doi.org/10.1016/j.jhazmat.2021.126124
6. Yang, Q., Peng, Y., Wu, X., Cao, X., Zhang, P., Liang, Z. et al. (2025). Microplastics in human skeletal tissues: Presence, distribution and health implications. Environment International, 196, Article 19316. https://doi.org/10.1016/j.envint.2025.109316
7. Zhan, W., Rhim, J.-W. (2022). Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packaging and Shelf Life, 31, Article 100806. https://doi.org/10.1016/j.fpsl.2021.100806
8. Bampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Dusemund, B., Durjava, M. F. et al. (2021). Safety and efficacy of a feed additive consisting of titanium dioxide for all animal species (Kronos International, Inc.). EFSA Journal, 19(6), Article e06630. https://doi.org/10.2903/j.efsa.2021.6630
9. Naves, M. P. C., de Morais, C. R., Silva, A. C. A., Dantas, N. O., Spanó, M. A., de Rezende, A. A. A. (2018). Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 112, 273–281. https://doi.org/10.1016/j.fct.2017.12.040
10. Shi, J., Han, S., Zhang, J., Liu, Y., Chen, Z., Jia, G. (2022). Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NanoImpact, 25, Article 100377. https://doi.org/10.1016/j.impact.2021.100377
11. Wu, Y., Chen, L., Chen, F., Zou, H., Wang, Z. (2020). A key moment for TiO2: Prenatal exposure to TiO2 nanoparticles may inhibit the development of offspring. Ecotoxicology and Environmental Safety, 202, Article 110911. https://doi.org/10.1016/j.ecoenv.2020.110911
12. El Yamani, N., Rubio, L., García-Rodríguez, A., Kažimírová, A., Rundén-Pran, E., Magdalena, B. et al. (2022). Lack of mutagenicity of TiO2 nanoparticles in vitro despite cellular and nuclear uptake. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 882, Article 503545. https://doi.org/10.1016/j.mrgentox.2022.503545
13. Bastardo-Fernández, I., Chekri, R., Oster, C., Thoury, V., Fisicaro, P., Jitaru, P. et al. (2024). Assessment of TiO2 (nano)particles migration from food packaging materials to food simulants by single particle ICP-MS/MS using a high efficiency sample introduction system. NanoImpact, 34, Article 100503. https://doi.org/10.1016/j.impact.2024.100503
14. Yang, Ch., Zhu, B., Wang, J., Qin, Yu. (2019). Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. International Journal of Biological Macromolecules, 139, 85–93. https://doi.org/10.1016/j.ijbiomac.2019.07.151
15. Bertoldi, C., Pena, A. de C. C., Dallegrave, A., Fernandes, A. N., Gutterres, M. (2020). Photodegradation of emerging contaminant 2-(tiocyanomethylthio) benzothiazole (TCMTB) in aqueous solution: Kinetics and transformation products. Bulletin of Environmental Contamination and Toxicology, 105(3), 443–439. https://doi.org/10.1007/s00128-020-02954-2
16. Hansen, A., Brans, R., Sonsmann, F. (2021). Allergic contact dermatitis to rubber accelerators in protective gloves: Problems, challenges and solutions for occupational skin protection. Allergologie Select, 5, 335–344. https://doi.org/10.5414/ALX02265E
17. Gao, W., Cheng, Y., Ni, Y., Wu, A., Song, S., Kuang, H. et al. (2024). Immunochromatographic assay for detection (2-benzothiazolylthio) methyl thiocyanate in food packaging paper materials. Food Bioscience, 60, Article 104260. https://doi.org/10.1016/j.fbio.2024.104260
18. Glenn, G., Shogren, R., Jin, X., Orts, W., Hart-Cooper, W., Olson, L. (2021). Perand polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2596–2625. https://doi.org/10.1111/1541-4337.12726
19. Carnero, A. R., Lestido-Cardama, A., Loureiro, P. V., Barbosa-Pereira, L., de Quirós, A. R. B., Sendón, R. (2021). Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food. Foods, 10(7), Article 1443. https://doi.org/10.3390/foods10071443
20. Hepburn, E., Madden, C., Szabo, D., Coggan, T. L., Clarke, B., Currell, M. (2019). Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environmental Pollution, 248, 101–113. https://doi.org/10.1016/j.envpol.2019.02.018
21. Ateia, M., Maroli, A., Tharayil, N., Karanfil, T. (2019). The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 220, 866–882. https://doi.org/10.1016/j.chemosphere.2018.12.186
22. Schaider, L. A., Balan, S. A., Blum, A., Andrews, D. Q., Strynar, M. J., Dickinson, M. E. et al. (2017). Fluorinated compounds in U. S. Fast food packaging. Environmental Science and Technology Letters, 4(3), 105–111. https://doi.org/10.1021/acs.estlett.6b00435
23. Barry, V., Winquist, A., Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environmental Health Perspectives, 121(11–12), 1313–1318. https://doi.org/10.1289/EHP.1306615
24. Dueñas-Mas, M. J., Ballesteros-Gómez, A., de Boer, J. (2023). Determination of several PFAS groups in food packaging material from fast-food restaurants in France. Chemosphere, 339, Article 139734 https://doi.org/10.1016/j.chemosphere.2023.139734
25. Alin, J., Hakkarainen, M. (2010). Type of polypropylene material significantly influences the migration of antioxidants from polymer packaging to food simulants during microwave heating. Journal of Applied Polymer Science, 118(2), 1084–1093. https://doi.org/10.1002/app.32472
26. Díaz-Galiano, F. J., Gómez-Ramos, M. J., Beraza, I., Murcia-Morales, M., Fernández-Alba, A. R. (2023). Cooking food in microwavable plastic containers: In situ formation of a new chemical substance and increased migration of polypropylene polymers. Food Chemistry, 417, Article 135852. https://doi.org/10.1016/j.foodchem.2023.135852
27. Bauer, A., Jesús, F., Ramos, M.J.G., Lozano, A., Fernández-Alba, A. R. (2019). Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry. Food Chemistry, 295, 274–288. https://doi.org/10.1016/j.foodchem.2019.05.105
28. Fang, H., Wang, J., Lynch, R. A. (2017). Migration of di(2-ethylhexyl)phthalate (DEHP) and di-nbutylphthalate (DBP) from polypropylene food containers. Food Control, 73(Part B), 1298–1302. https://doi.org/10.1016/j.foodcont.2016.10.050
29. Lau, O.-W., Wong, S.-K. (2000). Contamination in food from packaging material. Journal of Chromatography A, 882(1–2), 255–270. https://doi.org/10.1016/S0021-9673(00)00356-3
30. Duty, S. M., Calafat, A. M., Silva, M. J., Ryan, L., Hauser, R. (2005). Phthalate exposure and reproductive hormones in adult men. Human Reproduction, 20(3), 604–610. https://doi.org/10.1093/humrep/deh656
31. Latini, G., Del Vecchio, A., Massaro, M., Verrotti, A., De Felice, C. (2006). Phthalate exposure and male infertility. Toxicology, 226(2–3), 90–98. https://doi.org/10.1016/j.tox.2006.07.011
32. Singh, S., Li, S. S.-L. (2011). Phthalates: Toxicogenomics and inferred human diseases. Genomics, 97(3), 148–157. https://doi.org/10.1016/j.ygeno.2010.11.008
33. Heudorf, U., Mersch-Sundermann, V., Angerer, J. (2007). Phthalates: Toxicology and exposure. International Journal of Hygiene and Environmental Health, 210(5), 623–634. https://doi.org/10.1016/j.ijheh.2007.07.011
34. Wang, Y., Qian, H. (2021). Phthalates and their impacts on human health. Healthcare, 9(5), Article 603. https://doi.org/10.3390/healthcare9050603
35. Pack, E. C., Lee, K. Y., Jung, J. S., Jang, D. Y., Kim, H. S., Koo, Y. L. et al. (2021). Determination of the migration of plastic additives and non-intentionally added substances into food simulants and the assessment of health risks from convenience food packaging. Food Packaging and Shelf Life, 30, Article 100736. https://doi.org/10.1016/j.fpsl.2021.100736
36. Alin, J., Hakkarainen, M. (2013). Combined chromatographic and mass spectrometric toolbox for fingerprinting migration from PET tray during microwave heating. Journal of Agricultural and Food Chemistry, 61(6), 1405–1415. https://doi.org/10.1021/jf3047847
37. Aznar, M., Domeño, C., Osorio, J., Nerin, C. (2020). Release of volatile compounds from cooking plastic bags under different heating sources. Food Packaging and Shelf Life, 26, Article 100552. https://doi.org/10.1016/j.fpsl.2020.100552
38. SCICOM. (2009). Migration de 4-méthylbenzophénone de l’emballage en carton imprimé vers les céréales de petit déjeuner (dossier 2009/05) Conseil urgent validé par le Comité scientifique le 16/02/2009 Retrieved from https://scicom.favvafsca.be/comitescientifique/avis/2009/_documents/CONSEILurgent_05-2009_FR_DOSSIER2009-05.pdf Accessed September 12, 2024.
39. UN System Chief Executives Board for Coordination. High-Level Committee on Management. Human Resources Network (2009). Conclusions of the meeting of the Human Resources Network, 17th session (UNWTO, Madrid, 4–6 March 2009): Chief Executives Board for Coordination. Retrieved from https://digitallibrary.un.org/record/3921446?v=pdf Accessed September 12, 2024.
40. Momo, F., Fabris, S., Stevanato, R. (2007). Interaction of isopropylthioxanthone with phospholipid liposomes. Biophysical Chemistry, 127(1–2), 36–40. https://doi.org/10.1016/j.bpc.2006.12.002
41. Peijnenburg, A., Riethof-Poortman, J., Bayku, H., Portier, L., Bovee, T., Hoogenboom R. (2010). AhR‑agonistic, anti-androgenic, and anti-estrogenic potencies of 2-isopropylthioxanthone (ITX) as determined by in vitro bioassays and gene expression profiling. Toxicology in Vitro, 24(6), 1619–1628. https://doi.org/10.1016/j.tiv.2010.06.004
42. Rhodes, M. С., Bucher, J. R., Peckham, J. C., Kissling, G. E., Hejtmancik, M. R., Chhabra, R. S. (2007). Carcinogenesis studies of benzophenone in rats and mice. Food and Chemical Toxicology, 45(5), 843–851. https://doi.org/10.1016/j.fct.2006.11.003
43. Hsieh, M. H., Grantham, E. C., Liu, B., Macapagal, R., Willingham, E., Baskin, L. S. (2007). In utero exposure to benzophenone‑2 causes hypospadias through an estrogen receptor dependent mechanism. Journal of Urology, 178(4S), 1637–1642. https://doi.org/10.1016/j.juro.2007.03.190
44. Jeon, H.-K., Sarma, S.N., Kim, Y.-J., Ryu, J.-C. (2008). Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology, 248(2–3), 89–95. https://doi.org/10.1016/j.tox.2008.02.009
45. Ji, S., Zhang, J., Tao, G., Peng, C., Sun, Y., Hou, R. et al. (2019). Influence of heating source on the migration of photoinitiators from packaging materials into Tenax® and popcorn. Food Packaging and Shelf Life, 21, Article 100340. https://doi.org/10.1016/j.fpsl.2019.100340
46. Liang, Q., Wang, Z., Du, W., Liu, W., Cao, J., Ren, J. et al. (2022). Determination of 18 photoinitiators in food paper packaging materials by FastPrep-based extraction combined with GC–MS. Food Chemistry, 377, Article 131980. https://doi.org/10.1016/j.foodchem.2021.131980
47. Abril, C., Santos, J. L., Martin, J., Aparicio, I., Alonso, E. (2020). Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. Science of the Total Environment, 711, Article 135048. https://doi.org/10.1016/j.scitotenv.2019.135048
48. Macczak, A., Cyrkler, M., Bukowska, B., Michalowicz, J. (2017). Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Toxicology in Vitro, 41, 143–149. https://doi.org/10.1016/j.tiv.2017.02.018
49. Zhang, Y.-F., Ren, X.-M., Li, Y.-Y., Yao, X.-F., Li, C.-H., Qin, Z.-F. et al. (2018). Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environmental Pollution, 237, 1072–1079. https://doi.org/10.1016/j.envpol.2017.11.027
50. Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y.-L., Wu, Y. et al. (2016). Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity-A review. Environmental Science and Technology, 50(11), 5438–5453. https://doi.org/10.1021/acs.est.5b05387
51. Huang, Z., Zhao, J.-L., Yang, Y.-Y., Jia, Y.-W., Zhang, Q.-Q., Chen, C.-E. et al. (2020). Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers.. Environmental Pollution, 263(Part B), Article 114361. https://doi.org/10.1016/j.envpol.2020.114361
52. Yan, Z., Liu, Y., Yan, K., Wu, S., Han, Z., Guo, R. et al. (2017). Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere, 184, 318–328. https://doi.org/10.1016/j.chemosphere.2017.06.010
53. Zhao, X., Qiu, W., Zheng, Y., Xiong, J., Gao, C., Hu, S. (2019). Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 180, 43–52. https://doi.org/10.1016/j.ecoenv.2019.04.083
54. Jin, H., Xie, J., Mao, L., Zhao, M., Bai, X., Wen, J. et al. (2020). Bisphenol analogue concentrations in human breast milk and their associations with postnatal infant growth. Environmental Pollution, 259, Article 113779. https://doi.org/10.1016/j.envpol.2019.113779
55. Li, A., Zhuang, T., Shi, W., Liang, Y., Liao, C., Song, M. et al (2020). Serum concentration of bisphenol analogues in pregnant women in China. Science of The Total Environment, 707, Article 136100. https://doi.org/10.1016/j.scitotenv.2019.136100
56. Mendy, A., Salo, P. M., Wilkerson, J., Feinstein, L., Ferguson, K. K., Fessler, M. B. et al. (2020). Association of urinary levels of bisphenols F and S used as bisphenol A substitutes with asthma and hay fever outcomes. Environmental Pollution, 183, Article 108944. https://doi.org/10.1016/j.envres.2019.108944
57. Cano-Nicolau, J., Valliant, C., Pellegrini, E., Charlier, T. D., Kah, O., Coumailleau, P. (2016). Estrogenic effects of several BPA analogs in the developing zebrafish brain. Frontiers in Neuroscience, 10, Article 112. https://doi.org/10.3389/fnins.2016.00112
58. Mokra, K., Kuźmińska-Surowaniec, A., Woźniak, K., Michałowicz, J. (2017). Evaluation of DNA‑damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food and Chemical Toxicology, 100, 62–69. https://doi.org/10.1016/j.fct.2016.12.003
59. Ali, N. F. M., Sajid, M., Abd Halim, W. I. T., Mohamed, A. H., Zain, N. N. M., Kamaruzaman, S. et. al. (2023). Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: An updated review. Microchemical Journal, 184(Part A), Article 108158. https://doi.org/10.1016/j.microc.2022.108158
60. Yang, C., Wang, Y., Dong, P. Z., Li, Y., Pang, Y.-H. (2024). Determination of bisphenols in food and its contact materials migration by magnetic solid-phase extraction coupled with LC–MS/MS. Food Bioscience, 59, Article 104179. https://doi.org/10.1016/j.fbio.2024.104179
61. Guan, S., Wu, H., Yang, L., Wang, Z., Wu, J. (2020). Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. Journal of Separation Science, 43(19), 3775–3784. https://doi.org/10.1002/jssc.202000616
62. Tian, L., Zheng J., Pineda, M., Yargeau, V., Furlong, D., Chevrier J. et al. (2022). Targeted screening of 11 bisphenols and 7 plasticizers in food composites from Canada and South Africa. Food Chemistry, 385, Article 132675. https://doi.org/10.1016/j.foodchem.2022.132675
63. Khan, M. R., Ouladsmane, M., Alammari, A. M., Azam, M. (2021). Bisphenol A leaches from packaging to fruit juice commercially available in markets. Food Packaging and Shelf Life, 28, Article 100678. https://doi.org/10.1016/j.fpsl.2021.100678
64. Cunha, S. C., Fernandes, J. O. (2013). Assessment of bisphenol A and bisphenol B in canned vegetables and fruits by gas chromatography — mass spectrometry after QuEChERS and dispersive liquid–liquid microextraction. Food Control, 33(2), 549–555. https://doi.org/10.1016/j.foodcont.2013.03.028
65. Kumar, A., Singh, D., Bhandari, R., Malik, A. K., Kaur, S., Singh, B. (2023). Bisphenol A in canned soft drinks, plastic-bottled water, and household water tank from Punjab, India. Journal of Hazardous Materials Advances, 9, Article 100205. https://doi.org/10.1016/j.hazadv.2022.100205
66. Wang, Qi., Kaur, Y., Wu, Y., Li, S., Bai, H., Zhou, Q. (2023). β-Cyclodextrin functionalized magnetic polyamine-amine dendrimers for high enrichment and effective analysis of trace bisphenolic pollutants in beverages. Chemosphere, 328, Article 138537. https://doi.org/10.1016/j.chemosphere.2023.138537
67. Yao, K., Zhang, J., Niu, Y., Zhang, X., Yang, Y., Wu, Y. et al. (2023). Multi-immunoaffinity column for the simultaneous analysis of bisphenol A and its analogues in Chinese foods by liquid chromatography tandem mass spectrometry. Food Chemistry, 422, Article 136295. https://doi.org/10.1016/j.foodchem.2023.136295
Review
For citations:
Utyanov D.A., Vostrikova N.L., Vasilevskaya E.R., Kulikovskii A.V., Karabanov S.Yu. Chemical contaminants entering food products from polymer packaging. Review. Food systems. 2025;8(1):29-35. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-1-29-35