Preview

Пищевые системы

Расширенный поиск

Потенциал питательных компонентов рисовых отрубей (Oryza sativa) как функционального продукта питания для здорового потребления: обзор

https://doi.org/10.21323/2618-9771-2024-7-4-627-633

Аннотация

Производство риса-сырца (Oryza sativa) в Индонезии составило 56,54 млн тонн сухого зерна в 2018 году с увеличением спроса, что привело к росту производства побочных продуктов, таких как рисовые отруби. Рисовые отруби — продукт, богатый питательными веществами, содержит большое количество пищевых волокон и биоактивных соединений, которые обладают антихолестериновыми и антидиабетическими свойствами. Многие исследования in vitro и in vivo показали, что рисовые отруби обладают антиоксидантными свойствами, в основном благодаря токоферолу, γ-оризанолу и β-каротину, которые являются первичными и вторичными антиоксидантами. Эти антиоксиданты могут быть выделены из рисовых отрубей с  помощью эффективной экстракции и  фракционирования. Процедуры выращивания риса оказывают значительное влияние на состав питательных веществ рисовых отрубей. Тест NRA может использоваться для оценки условий роста растений, которые могут отражать метаболическую активность рисового растения. Повышенное содержание пищевых волокон (гемицеллюлоза, целлюлоза и лигнин) и ниацина делают рисовые отруби перспективным источником питательных веществ в  Индонезии, где распространен нездоровый образ жизни. При высоком уровне производства риса и спроса на отруби в Индонезии переработанные продукты из рисовых отрубей имеют большие перспективы в качестве функциональных продуктов для регулярного употребления в пищу, стимулируя более здоровое питание и способствуя предотвращению дегенеративных заболеваний.

Об авторах

А. Н. Агустина
Колледж медицинских наук (STIKes Fatmawati)
Индонезия

Агустина Аюда Ниа — Бакалавр

12450, Округ Чиландак, Южная Джакарта, Специальный Столичный Регион Джакарта, Jl. Andara Raya No.16 B, RT.2/RW.3, Pd. Labu

Тел.: +6221–2781–10–31



А. Н. М. Анзори
Аспирантура, Университет Айрлангга; Уттаранчалский институт фармацевтических наук, Уттаранчалский университет; Виртуальный исследовательский центр биоинформатики и биотехнологий
Индонезия

Анзори Ариф Нур Мухаммад — PhD, Доктор ветеринарных наук, научный сотрудник аспирантуры

60115, Восточная Ява, Сурабая, округ Мулиорехо, Джл. Айрлангга 4–6

Тел.: +628–214–464–78–32



Р. Пуспита
Национальный университет развития “Ветеран” в Джакарте
Индонезия

Пуспита Ратна — преподаватель, кафедра биохимии, медицинский факультет

12450, Округ Чиландак, Южная Джакарта, Специальный Столичный Регион Джакарта, Jl. RS. Fatmawati Raya, Pd. Labu

Тел.: +895–42–288–20–92



М. Читравати
Национальный университет развития “Ветеран” в Джакарте
Индонезия

Читравати Мила — преподаватель, кафедра физиологии, медицинский факультет

12450, Округ Чиландак, Южная Джакарта, Специальный Столичный Регион Джакарта, Jl. RS. Fatmawati Raya, Pd. Labu

Тел.: +6221–765–69–71



Ш. Вахюнингсих
Национальный университет развития “Ветеран» в Джакарте
Индонезия

Вахюнингсих Шри, преподаватель, кафедра общественного здравоохранения, медицинский факультет

12450, Округ Чиландак, Южная Джакарта, Специальный Столичный Регион Джакарта, Jl. RS. Fatmawati Raya, Pd. Labu

Тел.: +6221–765–69–71



С. Туба
Университет обороны Республики Индонезия
Индонезия

Туба Сиахрул  — преподаватель, кафедра клинической фармации, факультет военной фармации

16810, Западная Ява, провинция Богор, Богор, Район IPSC
Sentul, Сукавати, FVFJ+G4H

Тел.: +6221–87–95–15–55



М. А. Хердиансиах
Виртуальный исследовательский центр биоинформатики и биотехнологий; Университет Айрлангга
Индонезия

Хердиансиах Мохаммад Акилах — Бакалавр, кафедра биологии, факультет науки и технологии

60115, Восточная Ява, Сурабая, округ Мулиорехо, Джл. Айрлангга 4–6

Tel.: +628–880–700–02–22



М. Кристанти
Национальный университет развития “Ветеран” в Джакарте
Индонезия

Кристанти Мелли — преподаватель, кафедра общественного здравоохранения, медицинский факультет

12450, Округ Чиландак, Южная Джакарта, Специальный Столичный Регион Джакарта, Jl. RS. Fatmawati Raya, Pd. Labu

Тел.: +6221–765–69–71



Список литературы

1. Badan Pusat Statistik (BPS). (2018). Executive summary of rice harvest and production area in Indonesia 2018. Jakarta: BPS Press, 2018. (In Indonesian)

2. Jufri, N. N., Wirjatmadi, B., Adriani, M. Combined food (rice bran and fat) reduce of the total cholesterol levels, triglycerides, and LDL of wistar strain rats. Jurnal Kedokteran Brawijaya, 28(3), 208. https://doi.org/10.21776/ub.jkb.2015.028.03.8

3. Attia, Y. A., Ashour, E. A., Nagadi, S. A., Farag, M. R., Bovera, F., Alagawany, M. (2023). Rice bran as an alternative feedstuff in broiler nutrition and impact of liposorb® and vitamin E-Se on sustainability of performance, carcass traits, blood biochemistry, and antioxidant indices. Veterinary Sciences, 10(4), Article 299. https://doi.org/10.3390/vetsci10040299

4. Tufail, T., Ain, H. B. U., Chen, J., Virk, M. S., Ahmed, Z., Ashraf, J. et al. (2024). Contemporary views of the extraction, health benefits, and industrial integration of rice bran oil: A prominent ingredient for holistic human health. Foods, 13(9), Article 1305. https://doi.org/10.3390/foods13091305

5. Tan, B. L., Norhaizan, M. E., Chan, L. C. (2023). Rice bran: From waste to nutritious food ingredients. Nutrients, 15(11), Article 2503. https://doi.org/10.3390/nu15112503

6. Arun, K. B., Dhanya, R., Chandran, J., Abraham, B., Satyan, S., Nisha, P. (2020). A comparative study to elucidate the biological activities of crude extracts from rice bran and wheat bran in cell line models. Journal of Food Science and Technology, 57(9), 3221–3231. https://doi.org/10.1007/s13197-020-04353-1

7. Nunoi, A., Wanapat, M., Foiklang, S., Ampapon, T., Viennasay, B. (2019). Effects of replacing rice bran with tamarind seed meal in concentrate mixture diets on the changes in ruminal ecology and feed utilization of dairy steers. Tropical Animal Health and Production, 51(3), 523–528. https://doi.org/10.1007/s11250-018-1719-z

8. Sajidan, S., Adi, F. P., Atmojo, I. R. W., Ardiansyah, R., Saputri, D. Y. (2021). Empowerment of non-productive communities in Demangan Hamlet, Sukoharjo Regency through MSMEs based on bran-based materials to realize economic resilience. International Journal of Community Service Learning, 5(2), 185–191. https://doi.org/10.23887/ijcsl.v5i2.34394 (In Indonesian)

9. Agency of Health Research and Development (Indonesia). (2013). Indonesia Basic Health Research. Retrieved from https://ghdx.healthdata.org/record/indonesia-basic-health-research2013 Accessed March 12, 2024. (In Indonesian)

10. Hasim, H., Nuris, M. A., Setyono, A., Qomaliyah, E. N., Faridah, D. N. (2020). Red yeast rice and rice bran extract to prevent lipid peroxidation in hyperglycemic Sprague-Dawley rats. Jurnal Aplikasi Teknologi Pangan, 9(2), 62–69. https://doi.org/10.17728/jatp.6077 (In Indonesian)

11. Temple, N. J. (2022). A rational definition for functional foods: A perspective. Frontiers in Nutrition, 9, Article 957516. https://doi.org/10.3389/fnut.2022.957516

12. Colombo, R., Moretto, G., Barberis, M., Frosi, I., Papetti, A. (2023). Rice byproduct compounds: From green extraction to antioxidant properties. Antioxidants, 13(1), Article 35. https://doi.org/10.3390/antiox13010035

13. Rashid, N. Y. A., Razak, D. L. A., Jamaluddin, A., Sharifuddin, S. A., Long, K. (2015). Bioactive compounds and antioxidant activity of rice bran fermented with lactic acid bacteria. Malaysian Journal of Microbiology, 11(2), 156–162. https://doi.org/10.21161/mjm.12714

14. Saleh, A. S. M., Wang, P., Wang, N., Yang, L., Xiao, Z. (2019). Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1070–1096. https://doi.org/10.1111/1541-4337.12449

15. Mir, S. A., Shah, M. A., Bosco, S. J. D., Sunooj, K. V., Farooq, S. (2020). A review on nutritional properties, shelf life, health aspects, and consumption of brown rice in comparison with white rice. Cereal Chemistry, 97(5), 895–903. https://doi.org/10.1002/cche.10322

16. Yılmaz, T. N. (2023). Stabilization of rice bran: A review. Foods, 12(9), Article 1924. https://doi.org/10.3390/foods12091924

17. Katileviciute, A., Plakys, G., Budreviciute, A., Onder, K., Damiati, S., Kodzius, R. (2019). A sight to wheat bran: High value-added products. Biomolecules, 9(12), Article 887. https://doi.org/10.3390/biom9120887

18. Musa, H., Abdullahi, A. I., El-Yakub, R. I., Yerima, I. A. (2020). Potential of bran from two varieties of rice (Oryza) spp for bioethanol production. Journal of Advances in Biology and Biotechnology, 23(9), 1–9. https://doi.org/10.9734/jabb/2020/v23i930175

19. Hidayat, C., Wina, E., Sopiyana, S. (2021). Beneficial bioactive compounds of rice bran for chicken’s functional feed. Indonesian Bulletin of Animal and Veterinary Sciences, 31(2), Article 75. https://doi.org/10.14334/wartazoa.v31i2.2676

20. Sapwarobol, S., Saphyakhajorn, W., Astina, J. (2021). Biological functions and activities of rice bran as a functional ingredient: A review. Nutrition and Metabolic Insights, 14, Article 11786388211058559. https://doi.org/10.1177/11786388211058559

21. Hartati, S., Khusnah, Y. K., Tari, A. I. N., Budi, H. C. (2023). The rice bran-based traditional foods: Study of existence, antioxidant activity, and consumer preference. IOP Conference Series Earth and Environmental Science, 1228(1), Article 012010. https://doi.org/10.1088/1755-1315/1228/1/012010

22. Hartati, S., Marsono, Y., Suparmo, S., Santoso, U. (2015). Chemical composition and antioxidant activity of rice bran hydrophilic extract of selected rice variety. Jurnal Agritech, 35(1), 35–42. https://doi.org/10.22146/agritech.9417 (In Indonesian)

23. Alauddin, M., Sultana, A., Faruque, M. O., Islam, F., Kabir, M. A., Shozib, H. B. et al. (2024). Functional evaluation of fermented rice bran and extracted rice bran oil addressing for human health benefit. Journal of Oleo Science, 73(4), 467–477. https://doi.org/10.5650/jos.ess23192

24. Shramko, V. S., Polonskaya, Y. V., Kashtanova, E. V., Stakhneva, E. M., Ragino, Y. I. (2020). The short overview on the relevance of fatty acids for human cardiovascular disorders. Biomolecules, 10(8), 1127. https://doi.org/10.3390/biom10081127

25. Talib, W. H., Mahmod, A. I., Awajan, D., Hamed, R. A., Al-Yasari, I. H. (2022). Immunomodulatory, anticancer, and antimicrobial effects of rice bran grown in Iraq: An in vitro and in vivo study. Pharmaceuticals, 15(12), Article 1502. https://doi.org/10.3390/ph15121502

26. Kustiyah, L., Dewi, M., Damayanthi, E., Dwiriani, C. M., Alamsah, D. (2019). Lipid profile improvement of overweight-obese adults after high antioxidant tomato and rice bran drinks intervention. Indian Journal of Public Health Research and Development, 10(6), 551. https://doi.org/10.5958/0976-5506.2019.01332.9

27. Chaikul, P., Kanlayavattanakul, M., Khongkow, M., Jantimaporn, A., Lourith, N. (2024). Anti-skin ageing activities of rice (Oryza sativa) bran soft and hard waxes in cultured skin cells. International Journal of Cosmetic Science, 46(2), 162–174. https://doi.org/10.1111/ics.12918

28. Ahn, J., Son, H. J., Seo, H. D., Ha, T. Y., Ahn, J., Lee, H. et al. (2021). γ-oryzanol improves exercise endurance and muscle strength by upregulating PPARδ and ERRγ activity in aged mice. Molecular Nutrition and Food Research, 65(14), e2000652. https://doi.org/10.1002/mnfr.202000652

29. Perez-Ternero, C., Alvarez de Sotomayor, M., Herrera, M. D. (2017). Contribution of ferulic acid, γ-oryzanol, and tocotrienols to the cardiometabolic protective effects of rice bran. Journal of Functional Foods, 32, 58–71. https://doi.org/10.1016/j.jff.2017.02.014

30. Henderson, A. J., Ollila, C. A., Kumar, A., Borresen, E. C., Raina, K., Agarwal, R. et al. (2012). Chemopreventive properties of dietary rice bran: Current status and future prospects. Advances in Nutrition, 3(5), 643–653. https://doi.org/10.3945/an.112.002303

31. Espinales, C., Cuesta, A., Tapia, J., Palacios-Ponce, S., Peñas, E., Martínez-Villaluenga, C.et al. (2022). The effect of stabilized rice bran addition on physicochemical, sensory, and techno-functional properties of bread. Foods, 11(21), Article 3328. https://doi.org/10.3390/foods11213328

32. Shibata, A., Kawakami, Y., Kimura, T., Miyazawa, T., Nakagawa, K. (2016). α-Tocopherol attenuates the triglyceride- and cholesterol-lowering effects of rice bran tocotrienol in rats fed a western diet. Journal of Agricultural and Food Chemistry, 64(26), 5361–5366. https://doi.org/10.1021/acs.jafc.6b02228

33. Liu, R., Xu, Y., Chang, M., Tang, L., Lu, M., Liu, R., Jin, Q., Wang, X. (2021). Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chemistry, 343, 128431. https://doi.org/10.1016/j.foodchem.2020.128431

34. Mumpuni, P. D., Ayustaningwarno, F. (2013). Analysis of tocopherol, γ-oryzanol, and β-carotene content and antioxidant activity of crude rice bran oil. Journal of Nutrition College, 2(3), 350–357. https://doi.org/10.14710/jnc.v2i3.3436 (In Indonesian)

35. Siswanti, N., Anandito, R. B. K., Nurhartadi, E., Agustiani, R. B. (2021). Formulation of snack bars made from black rice bran (Oryza sativa L.) and sweet potato flour (Ipomoea batatas L.). IOP Conference Series Earth and Environmental Science, 828(1), 012028. https://doi.org/10.1088/1755-1315/828/1/012028

36. Bhat, F. M., Sommano, S. R., Riar, C. S., Seesuriyachan, P., Chaiyaso, T., & Prom-uThai, C. (2020). Status of bioactive compounds from bran of pigmented traditional rice varieties and their scope in production of medicinal food with nutraceutical importance. Agronomy, 10(11), 1817. https://doi.org/10.3390/agronomy10111817

37. Priya, T. R., Nelson, A. R. L. E., Ravichandran, K., et al. (2019). Nutritional and functional properties of coloured rice varieties of South India: A review. Journal of Ethnic Foods, 6(11). https://doi.org/10.1186/s42779-019-0017-3

38. Sharif, M. K., Butt, M. S., Anjum, F. M., Khan, S. H. (2014). Rice bran: A novel functional ingredient. Critical Reviews in Food Science and Nutrition, 54(6), 807– 816. https://doi.org/10.1080/10408398.2011.608586

39. Carpenter K. J. (2012). The discovery of thiamin. Annals of Nutrition and Metabolism, 61(3), 219–223. https://doi.org/10.1159/000343109

40. Hasim, H., Hasanah, Q., Andrianto, D., Faridah, D. N. (2018). In vitro antioxidant and anti-hypercholesterolemia activity of a mixture of red yeast rice and rice bran extracts. Jurnal Teknologi dan Industri Pangan, 29(2), 145–154. https://doi.org/10.6066/jtip.2018.29.2.145 (In Indonesian)

41. Buzzelli, L., Segreti, A., Di Gioia, D., Lemme, E., Squeo, M. R., Nenna, A., Di Gioia, G. (2024). Alternative lipid-lowering strategies: State-of-the-art review of red yeast rice. Fitoterapia, 172, 105719. https://doi.org/10.1016/j.fitote.2023.105719

42. Pestana-Bauer, V. R., Zambiazi, R. C., Mendonça, C. R., Beneito-Cambra, M., Ramis-Ramos, G. (2012). γ-Oryzanol and tocopherol contents in residues of rice bran oil refining. Food Chemistry, 134(3), 1479–1483. https://doi.org/10.1016/j.foodchem.2012.03.059

43. Hasim, Faridah, D.N. and Mithania, D. (2019). Addition of red yeast rice and rice bran to agar-agar as an alternative cholesterol-binding snack. Jurnal Mutu Pangan, 6(2), 85–90. https://doi.org/10.29244/jmpi.2019.6.85 (In Indonesian)

44. Govindarajan, S., Vellingiri, K. (2016). Effect of red yeast rice and coconut, rice bran or sunflower oil combination in rats on hypercholesterolemic diet. Journal of Clinical and Diagnostic Research, 10(4), BF05-BF7. https://doi.org/10.7860/JCDR/2016/18623.7624

45. Djaeni, M., Listyadevi, Y. L. (2019). Improvement of process speed and quality of rice bran oil through ultrasonic-assisted extraction. Teknik, 40(1), 18. https://doi.org/10.14710/teknik.v39i3.22826 (In Indonesian)

46. Wang, D., Liu, X., Luo, T., Wei, T., Zhou, Z., Deng, Z. (2024). Microencapsulated rice bran alleviates hyperlipidemia induced by high-fat diet via regulating lipid metabolism and gut microbiota. Journal of Food Science, 89(9), 5870–5883. https://doi.org/10.1111/1750–3841.17174

47. Tuarita M. Z., Sadek N. F., Sukarno S., Yuliana N. D., Budijanto S. (2017). Rice bran development as functional foods: The opportunities, obstacles, and challenge. Jurnal Pangan, 26, 1–11.

48. Kahlon, T. S., Chow, F. I., Sayre, R. N., Betschart, A. A. (1992). Cholesterol-lowering in hamsters fed rice bran at various levels, defatted rice bran and rice bran oil. The Journal of Nutrition, 122(3), 513–519. https://doi.org/10.1093/jn/122.3.513

49. Xu, Z., Godber, J. S. (2001). Antioxidant activities of major components of γ-oryzanol from rice bran using a linoleic acid model. Journal of the American Oil Chemists Society, 78(6). https://doi.org/10.1007/s11746-001-0320-1

50. Nugrahani, R. A., Hendrawati, T. Y., Hasyim, U. H., Sari, F., Ramadhan, A. I. (2024). Kinetic parameter for scale-up and γ-oryzanol content of rice bran oil as antioxidant: Comparison of maceration, ultrasonication, pneumatic press extraction. Heliyon, 10(10), Article e30880. https://doi.org/10.1016/j.heliyon.2024.e30880

51. Verschoyle, R. D., Greaves, P., Cai, H., Edwards, R. E., Steward, W. P., Gescher, A. J. (2007). Evaluation of the cancer chemopreventive efficacy of rice bran in genetic mouse models of breast, prostate and intestinal carcinogenesis. British Journal of Cancer, 96(2), 248–254. https://doi.org/10.1038/sj.bjc.6603539

52. Jannah, D. W., Maunatin, A., Jannah, A. (2020). Identification and toxicity test of shrimp larvae (Artemia salina L.) bran extract using variation of solvent type and extraction time. ALCHEMY: Journal of Chemistry, 8(2), 16–23. https://doi.org/10.18860/al.v8i2.11512 (In Indonesian)

53. Nam, S. H., Choi, S. P., Kang, M. Y., Kozukue, N., Friedman, M. (2005). Antioxidative, antimutagenic, and anticarcinogenic activities of rice bran extracts in chemical and cell assays. Journal of Agricultural and Food Chemistry, 53(3), 816– 822. https://doi.org/10.1021/jf0490293

54. Rao, A. S., Reddy, S. G., Babu, P. P., Reddy, A. R. (2010). The antioxidant and antiproliferative activities of methanolic extracts from Njavara rice bran. BMC Complementary and Alternative Medicine, 10, 4. https://doi.org/10.1186/1472-6882-10-4

55. Zhang, X., Dong, L., Jia, X., Liu, L., Chi, J., Huang, F., Ma, Q. et al. (2020). Bound phenolics ensure the antihyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota. Journal of Agricultural and Food Chemistry, 68(15), 4387–4398. https://doi.org/10.1021/acs.jafc.0c00584

56. Kristamtini, K., Wiranti, E. W. (2017). Clustering of 18 local black rice varieties based on total anthocyanin. Biology, Medicine, and Natural Product Chemistry, 6(2), 47–51. https://doi.org/10.14421/biomedich.2017.62.47-51

57. Kurnia, D., Lisniawati, N. A., Dinata, D. I. (2019). Cholesterol binding test by methanol extract of black glutinous rice bran in vitro. Jurnal Kimia Riset, 4(1), 74–80. https://doi.org/10.20473/jkr.v4i1.13198

58. Wu, Q., Zhang, M., Hu, H., Tu, Y., Gao, P., Li, T. et al. (2024). Comparative study on chemical composition, functional properties of dietary fibers prepared from four China cereal brans. International Journal of Biological Macromolecules, 257(Part 2), Article 128510. https://doi.org/10.1016/j.ijbiomac.2023.128510

59. Iqbal, S., Bhanger, M. I., Anwar, F. (2005). Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chemistry, 93(2), 265–272. https://doi.org/10.1016/j.foodchem.2004.09.024

60. Ronie, M. E., Abdul Aziz, A. H., Kobun, R., Pindi, W., Roslan, J., Putra, N. R., Mamat, H. (2024). Unveiling the potential applications of plant by-products in food — A review. Waste Management Bulletin, 2(3), 183–203. https://doi.org/10.1016/j.wmb.2024.07.008

61. Liu, Z., Liu, X., Ma, Z., Guan, T. (2023). Phytosterols in rice bran and their health benefits. Frontiers in Nutrition, 10, Article 1287405. https://doi.org/10.3389/fnut.2023.1287405

62. Bultum, L. E., Emire, S. A., Tufa, L. T. (2022). Physicochemical characterization of microwave-stabilized rice bran oil from Ethiopian small-scale rice-processing plants. Frontiers in Food Science and Technology, 2, Article 1011445. https://doi.org/10.3389/frfst.2022.1011445

63. Pal, Y. P., Pratap, A. P. (2017). Rice bran oil: A versatile source for edible and industrial applications. Journal of Oleo Science, 66(6), 551–556. https://doi.org/10.5650/jos.ess17061

64. Phongthai, S., Homthawornchoo, W., Rawdkuen, S. (2017). Preparation, properties and application of rice bran protein: A review. International Food Research Journal, 24(1), 25–34.

65. Wisetkomolmat, J., Arjin, C., Satsook, A., Seel-Audom, M., Ruksiriwanich, W., Prom-U-Thai, C., Sringarm, K. (2022). Comparative analysis of nutritional components and phytochemical attributes of selected Thai rice bran. Frontiers in Nutrition, 9, Article 833730. https://doi.org/10.3389/fnut.2022.833730

66. Zarei, I., Brown, D. G., Nealon, N. J., Ryan, E. P. (2017). Rice bran metabolome contains amino acids, vitamins and cofactors, and phytochemicals with medicinal and nutritional properties. Rice, 10(1), Article 24. https://doi.org/10.1186/s12284-017-0157-2

67. Huang, W., Liu, B., Shi, D., Cheng, A., Chen, G., Liu, F. et al. (2024). Research progress on the quality, extraction technology, food application, and physiological function of rice bran oil. Foods, 13(20), Article 3262. https://doi.org/10.3390/foods13203262

68. Siswanti, D. U., Asri, N. S., Arlinda, M., Rochman, A. P. S., Syahidah, A. (2018). Physiological response of 'Segreng' rice plant (Oryza sativa L.) to biogas sludge at Wukirsari Village, Cangkringan, Sleman. Biology, Medicine, & Natural Product Chemistry, 7(1), 21–26. https://doi.org/10.14421/biomedich.2018.71.21-26

69. Gul, K., Yousuf, B., Singh, A. K., Singh, P., Wani, A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food — A review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24–30. https://doi.org/10.1016/j.bcdf.2015.06.002

70. Rico, C. M., Morales, M. I., Barrios, A. C., McCreary, R., Hong, J., Lee, W. Y., Nunez, J., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2013). Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 61(47), 11278–11285. https://doi.org/10.1021/jf404046v


Рецензия

Для цитирования:


Агустина А.Н., Анзори А.Н., Пуспита Р., Читравати М., Вахюнингсих Ш., Туба С., Хердиансиах М.А., Кристанти М. Потенциал питательных компонентов рисовых отрубей (Oryza sativa) как функционального продукта питания для здорового потребления: обзор. Пищевые системы. 2024;7(4):627-633. https://doi.org/10.21323/2618-9771-2024-7-4-627-633

For citation:


Agustina A.N., Ansori A.N., Puspita R., Citrawati M., Wahyuningsih S., Tuba S., Herdiansyah M.A., Kristanti M. The potential of rice bran (Oryza sativa) nutritional components as a functional food for healthy consumption: A review. Food systems. 2024;7(4):627-633. https://doi.org/10.21323/2618-9771-2024-7-4-627-633

Просмотров: 1135


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)