Лазерное облучение и кожура граната для сохранения качества клубники
https://doi.org/10.21323/2618-9771-2024-7-4-605-611
Аннотация
Настоящее исследование направлено на изучение влияния лазерного облучения и нанесение покрытия из хитозана и экстракта кожуры граната на физико-химические свойства, потерю веса, упругость, функциональные, микробиологические, цветовые и органолептические характеристики ягод клубники в течение пятнадцати дней хранения в холодном режиме. Было проведены четыре обработки клубники лазерным облучением в течение 6 минут. Вторая, третья и четвертая группы были покрыты хитозаном, экстрактом кожуры граната (ЭКГ), и смесью хитозана и ЭКГ в соотношении 1:1. По сравнению с необработанной клубникой воздействие лазерного облучения снизило потерю веса клубники на 43,44%. Кроме того, лазерное облучение снизило отрицательное влияние хранения на общее содержание фенолов, антоцианов, аскорбиновой кислоты и антиоксидантные свойства клубники. Воздействие лазерного облучения на клубнику снизило количество грибков и психротрофных бактерий, и продемонстрировало положительное влияние на цвет и органолептические свойства. Покрытие ЭКГ и хитозаном усилило положительное влияние лазерного облучения на функциональные и качественные свойства клубники при ее хранении в холодных условиях. Можно сделать вывод, что лазерное облучение и покрытие ЭКГ могут применяться как новые технологии для сохранения свойств клубники в период ее хранения.
Об авторах
Н. ЭльсайедЕгипет
Эльсайед Нерсен — адъюнкт-профессор, кафедра науки о питании, сельскохозяйственный факультет
12613, Египет, Гиза, ул. Гамаа, 1
Tel.: + 2–0112–244–58–88
Х. Элькашиф
Египет
Элькашиф Хейни — адъюнкт-профессор, кафедра науки о молоке, сельскохозяйственный факультет
12613, Египет, Гиза, ул. Гамаа, 1
Тел.: + 2–0112–570–95–80
С. Р. Али
Египет
Али Шаймаа Раби — PhD, лектор, Отдел применения лазеров в метрологии, фотохимии и сельском хозяйстве, Национальный институт лазерных технологий (NILES)
12613, Египет, Гиза, ул. Гамаа, 1
Тел.: +2–01000–355–31–11
Список литературы
1. Sami, R., Khojah, E., Elhakem, A., Benajiba, N., Helal, M., Alhuthal, N. et al. (2021). Performance study of Nano/SiO2 films and the antimicrobial application on cantaloupe fruit shelf-life. Applied Sciences, 11(9), 3879–3891. https://doi.org/10.3390/app11093879
2. Kumar, N., Pratibha, Trajkovska Petkoska, A., Khojah, E., Sami, R., Al-Mushhin, A. A. M. (2021). Chitosan edible films enhanced with pomegranate peel extract: Study on physical, biological, thermal, and barrier properties. Materials, 14(12), 3305–3322. https://doi.org/10.3390/ma14123305
3. Piekarska, K., Sikora, M., Owczarek, M., Jóźwik-Pruska, J., Wiśniewska-Wrona, M. (2023). Chitin and chitosan as polymers of the future-obtaining, modification, life cycle assessment and main directions of application. Polymers, 15(4), Article 793. https://doi.org/10.3390/polym15040793
4. Gupta, N., Poddar, K., Sarkar, D., Kumari, N., Padhan, B., Sarkar, A. (2019). Fruit waste management by pigment production and utilization of residual as bioadsorbent. Journal of Environmental Management, 244, 138–143. https://doi.org/10.1016/j.jenvman.2019.05.055
5. Arun, K. B., Madhavan, A., Sindhu, R., Binod, P., Pandey, A., R, R., Sirohi, R. (2020). Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Industrial Crops and Products, 154, Article 112621. https://doi.org/10.1016/j.indcrop.2020.112621
6. Akhtar, S., Ismail, T., Fraternale, D., Sestili. P. (2015). Pomegranate peel and peel extracts: Chemistry and food features. Food Chemistry, 174, 417–425. https://doi.org/10.1016/j.foodchem.2014.11.035
7. Pirzadeh, M., Caporaso, N., Rauf, A., Shariati, M. A., Yessimbekov, Z., Khan, M. U. et al. (2020). Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Critical Reviews in Food Science and Nutrition, 61(6), 982–999. https://doi.org/10.1080/10408398.2020.1749825
8. Pandiselvam, R., Mayookha, V. P., Kothakota, A., Ramesh, S. V., Thirumdas, R., Juvvi, P. (2020). Bio-speckle laser technique–a novel nondestructive approach for food quality and safety detection. Trends in Food Science and Technology, 97, 1–13. https://doi.org/10.1016/j.tifs.2019.12.028
9. Shabir, I., Khan, S., Dar, A. H., Dash, K. K., Shams, R., Altaf, A. et al. (2022). Laser beam technology interventions in processing, packaging, and quality evaluation of foods. Measurement: Food, 8, Article 100062. https://doi.org/10.1016/j.meafoo.2022.100062
10. Hernández, A. C., Rodríguez, P. C. L., Domínguez-Pacheco, F. A., Hernández, A. A. M., Cruz-Orea, A., Carballo, C. A. (2011). Laser light on the mycoflora content in maize seeds. African Journal of Biotechnology, 10(46), 9280–9288. https://doi.org/10.5897/ajb11.605
11. Hernandez, A. C., Dominguez, P. A., Cruz, O. A., Ivanov, R., Carballo, C. A., Zepeda, B. R. (2010). Laser in agriculture. International Agrophysics, 24(4), 407–422.
12. Sandhu, A. K., Miller, M. G., Thangthaeng, N., Scott, T. M., Shukitt-Hale, B., Edirisinghe, I. et al. (2018). Metabolic fate of strawberry polyphenols laser chronic intake in healthy older adults. Food and Function, 9(1), 96–106. https://doi.org/10.1039/C7FO01843F
13. Miller, K., Feucht, W., Schmid, M. (2019). Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: A brief overview. Nutrients, 11(7), Article 1510. https://doi.org/10.3390/nu11071510
14. El-Hawary, S. S., Mohammed, R., El-Din, M. E., Hassan, H. M., Ali, Z. Y., Rateb, M. E. et al. (2021). Comparative phytochemical analysis of five Egyptian strawberry cultivars (Fragaria × ananassa Duch.) and antidiabetic potential of Festival and Red Merlin cultivars. RSC Advances, 11(27), 16755–16767. https://doi.org/10.1039/d0ra10748d
15. Almeida, M.L.B., Moura, C.F.H., Innecco, I., dos Santos, A., de Miranda, F.R. (2015). Postharvest shelf-life and fruit quality of strawberry grown in different cropping systems. African Journal of Agricultural Research, 10(43), 4053–4061. https://doi.org/10.5897/AJAR2015.10239
16. Hammad, K. S. M., Elsayed, N., Elkashef, H. (2021). Development of a whey protein concentrate/apple pomace extract edible coating for shelf life extension of fresh-cut apple. International Food Research Journal, 28(2), 377–385. http://dx.doi.org/10.47836/ifrj.28.2.19
17. Zambrano-Zaragoza, M. L., Mercado-Silva, E., Ramirez-Zamorano, P., Cornejo-Villegas, M. A., Gutíerrez-Cortez, E., Quintanar-Guerrero, D. (2013). Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Research International, 51(2), 946–953. https://doi.or/10.1016/j.foodres.2013.02.012
18. Elsayed, N., Hassan, A. A. M., Abdelaziz, S. M., Abdeldaym, E. A., Darwish, O. S. (2022). Effect of whey protein edible coating incorporated with mango peel extract on postharvest quality, bioactive compounds and shelf life of broccoli. Horticulture, 8(9), Article 770. https://doi.org/10.3390/horticulturae8090770
19. AOAC. (2000). Official Methods of Analysis. 17th Edition. The Association of Official Analytical Chemists, Gaithersburg, MD, USA, 2000.
20. Tonutare, T., Moor, U., Szajdak, L. (2014). Strawberry anthocyanin determination by pH differential spectroscopic method — How to get true results? Acta Scientiarum Polonorum Hortorum Cultus, 13(3), 35–47.
21. APHA. (2004). Standard Methods for the Examination of Dairy Products. 17th Edition. American Public Health Association, Washington, 2004.
22. Pilon, L., Spricigo, P. C., Miranda, M., de Moura, M. R., Assis, O. B. G., Mattoso, L. H. C. et al. (2015). Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. International Journal of Food Science Technology, 50(2), 440–448. https://doi.org/10.1111/ijfs.12616
23. Tanada-Palmu, P. S., Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36(2), 199–208. https://doi.org/10.1016/j.postharvbio.2004.12.003
24. Hernández-Muñoz, P., Almenar, E., Valle, V. D., Velez, D., Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria×ananassa) quality during refrigerated storage. Food Chemistry, 110(2), 428–435. https://doi.org/10.1016/j.foodchem.2008.02.020
25. Ali, L. M., Saleh, S. S., Ahmed, A. E.-R. A. E.-R., Hasan, H. E.-S., Suliman, A. E.-R. E. (2020). Novel postharvest management using laser irradiation to maintain the quality of strawberry. Journal of Food Measurement and Characterization, 14(6), 3615–3624. https://doi.org/10.1007/s11694-020-00600-3
26. Saeed, M., Azam, M., Ahmad, T., Akhtar, S., Hussain, M., Nasir, S. et al. (2022). Utilization of pomegranate peel extract as antifungal coating agent against Fusarium oxysporum on tomatoes. Journal of Food Processing and Preservation, 46, Article e17157. https://doi.org/10.1111/jfpp.17157
27. Taha, L. S., Taie, H. A. A., Metwally, S. A., Fathy, H. M. (2014). Effect of laser radiation treatments on in vitro growth behavior, antioxidant activity and chemical constituents of Sequoia sempervirens. Research Journal of Pharmaceutical Biological, 5(4), 1024–1304.
28. Cordenunsi, B. R., Genovese, M. I., do Nascimento, J. R.O., Hassimotto, N. M.A., dos Santos, R.J., Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chemistry, 91(1), 113–121. https://doi.org/10.1016/j.foodchem.2004.05.054
29. Pirvu, L. C., Nita, S., Rusu, N., Bazdoaca, C., Neagu, G., Bubueanu, C. et al. (2022). Effects of laser irradiation at 488, 514, 532, 552, 660, and 785 nm on the aqueous extracts of Plantago lanceolata L.: A comparison on chemical content, antioxidant activity and Caco2 viability. Applied Sciences, 12(11), Article 5517. https://doi.org/10.3390/app12115517
30. Salyaev, R. K., Dudareva, L. V., Lankevich, S. V., Makarenko, S. P., Sumtsova, V. M., Rudikovaskaya, E. G. (2007). Effect of low-intensity laser irradiation on the chemical composition and structure of lipids in wheat tissue culture. Doklady Biological Sciences, 412(1), 87–88. https://doi.org/10.1134/S0012496607010280
31. Maraei, R. W., Elsawy, K. M. (2017). Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. African Journal of Agricultural Research, 10(1), 80–87. http://dx.doi.org/10.1016/j.jrras.2016.12.004
32. Al-Zoreky, N. S. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Journal of Food Microbiology, 134(3), 244–248. https://doi.org/10.1016/j.ijfoodmicro.2009.07.002
33. Kaderides, K., Mourtzinos, I., Goula, A. M. (2020). Stability of pomegranate peel polyphenols encapsulated in orange juice industry by-product and their incorporation in cookies. Food Chemistry, 310, Article 125849. https://doi.org/10.1016/j.foodchem.2019.125849
34. Cruz-Valenzuela, M. R., Ayala-Soto, R. E., Ayala-Zavala, J. F., Espinoza-Silva, B. A., González-Aguilar, G. A., Martín-Belloso, O. et al. (2022). Pomegranate (Punica granatum L.) peel extracts as antimicrobial and antioxidant additives used in alfalfa sprouts. Foods, 11(17), Article 2588. https://doi.org/10.3390/foods11172588
35. Opara, L. U., Al-Ani, M. R., Al-Shuaibi, Y. S. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2(3), 315–321. https://doi.org/10.1007/s11947-008-0095-5
36. Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., Jiang, Y. (2003). Antioxidant activities of peel and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23(12), 1719–1726. https://doi.org/10.1016/j.nutres.2003.08.005
37. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254–260. https://doi.org/10.1016/j.foodchem.2005.02.033
38. Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B. et al. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496– 1547. https://doi.org/10.3390/12071496
39. Zhao, X., Yuan, Z. (2021). Anthocyanins from pomegranate (Punica granatum L.) and their role in antioxidant capacities in vitro. Chemistry and Biodiversity, 18(10), Article e2100399. https://doi.org/10.1002/cbdv.202100399
40. Darwish, O. S., Ali, M. R., Khojah, E., Samra, B. N., Ramadan, K. M. A., El-Mogy, M. M. (2021). Pre-harvest application of salicylic acid, abscisic acid, and methyl jasmonate conserve bioactive compounds of strawberry fruits during refrigerated storage. Horticulturae, 7(12), Article 568. https://doi.org/10.3390/horticulturae7120568
41. Azam, M., Saeed, M., Pasha, I., Shahid, M. (2020). A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. Food Bioscience, 37, Article 100679. https://doi.org/10.1016/j.fbio.2020.100679
42. Nazeam, J. A., Al-Shareef, W. A., Helmy, M. W., El-Haddad, A. E. (2020). Bioassayguided isolation of potential bioactive constituents from pomegranate agrifood by-product. Food Chemistry, 326, Article 126993. https://doi.org/10.1016/j.foodchem.2020.126993
43. Charalampia, D., Koutelidakis, A. E. (2017). From pomegranate processing by-products to innovative value-added functional ingredients and bio-based products with several applications in food sector. BAOJ Biotechnology, 3(1), Article 025.
44. El-Mogy, M. M., Ali, M. R., Darwish, O. S., Rogers, H. J. (2019). Impact of salicylic acid, abscisic acid, and methyl jasmonate on postharvest quality and bioactive compounds of cultivated strawberry fruit. Journal of Berry Research, 9(2), 333– 348. https://doi.org/10.3233/JBR180349
45. Dzhanfezova, T., Barba-Espín, G., Müller, R., Joernsgaard, B., Hegelund, J. N., Madsen, B. et al. (2020). Anthocyanin profile, antioxidant activity and total phenolic content of a strawberry (Fragaria × ananassa Duch) genetic resource collection. Food Bioscience, 36, Article 100620. https://doi.org/10.1016/j.fbio.2020.100620
46. Jiang, H., Sun, Z., Jia, R., Wang, X., Huang, J. (2016). Effect of chitosan as an antifungal and preservative agent on postharvest blueberry. Journal of Food Quality, 39(5), 516–523. https://doi.org/10.1111/jfq.12211
47. Alqahtani, N. K., Alnemr, T. M., Ali, S. A. (2023). Effects of pomegranate peel extract and/or lactic acid as natural preservatives on physicochemical, microbiological properties, antioxidant activity, and storage stability of Khalal Barhi date fruits. Foods, 12(6), 1160–1174. https://doi.org/10.3390/foods12061160
Рецензия
Для цитирования:
Эльсайед Н., Элькашиф Х., Али С.Р. Лазерное облучение и кожура граната для сохранения качества клубники. Пищевые системы. 2024;7(4):605-611. https://doi.org/10.21323/2618-9771-2024-7-4-605-611
For citation:
Elsayed N., Elkashef H., Ali Sh.R. Laser irradiation and pomegranate peel for preservation of the strawberry quality. Food systems. 2024;7(4):605-611. https://doi.org/10.21323/2618-9771-2024-7-4-605-611