Preview

Food systems

Advanced search

Methods of extraction, separation and identification of cyclic peptides from flaxseed (Linum usitatissimum L.): A review

https://doi.org/10.21323/2618-9771-2024-7-4-535-542

Abstract

Oilseed flax (Linum usitatissimum L.) is a valuable crop characterized by a high content of fats, dietary fiber, protein and various biologically active substances, in particular cyclopeptides. Cyclic peptides are a group of cyclic hydrophobic peptides consisting of eight to ten amino acids with a molecular weight in the range of 950–2300 Da. Flax oil and seeds contain from 0.1 to 0.3% cyclopeptides, which can exhibit antioxidant, anti-inflammatory, immunosuppressive, antihypertensive and antitumor activity. The aim of this review was to systematize and summarize the available literature data on methods of extraction, separation and identification of cyclopeptides from flaxseed oil. It was found that the main methods for obtaining cyclopeptides are solid-liquid, liquid-liquid or solid-phase extraction. Commonly used solvents include methanol, hexane, ethyl acetate, dichloromethane, acetonitrile and deionized water. Preparative flash chromatography on silica gel or polymer adsorbents is used to purify and concentrate cyclopeptides, and high-performance liquid chromatography (HPLC) is used to obtain individual standards. The most commonly used stationary phases are non-polar modified sorbents — octadecyl (C18) and phenylhexyl functional groups. Identification is carried out using instrumental methods of analysis: IR spectroscopy, NMR, HPLC with a diode array detector (HPLC-PDA/DAD), high-resolution tandem mass spectrometry with electrospray ionization (ESI-HR-MS/MS). For the qualitative and quantitative determination of cyclopeptides, the HPLC with a diode array detector at a wavelength of 214 nm is sufficient. In turn, mass spectral methods, including tandem mass spectrometry, make it possible to confirm the qualitative composition and establish the amino acid sequence of cyclic peptides.

About the Authors

R. V. Sobolev
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Roman V.  Sobolev, Candidate of Technical Sciences, Research Engineer, Laboratory of Food Biotechnologies and Specialized Products

2/14, Ustinsky proyezd, 109240, Moscow

Tel: +7–495–698–53–89



I. E. Sokolov
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Ilya E. Sokolov, Researcher, Laboratory of Food Toxicology and Safety Assessment of Nanotechnology

2/14, Ustinsky proyezd, 109240, Moscow

Tel: +7–495–698–53–89



N. A. Petrov
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Nikita A. Petrov, Candidate of Biological Sciences, Researcher, Laboratory of Food Biotechnologies and Specialized Products

2/14, Ustinsky proyezd, 109240, Moscow

Tel: +7–495–698–53–89



V. А. Sarkisyan
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Varuzhan A. Sarkisyan, Candidate of Biological Sciences, Senior Researcher, Laboratory of Food Biotechnologies and Specialized Products

2/14, Ustinsky proyezd, 109240, Moscow

Tel: +7–495–698–53–89



A. A. Kochetkova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Alla A. Kochetkova, Doctor of Technical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory of Food Biotechnologies and Specialized Products

2/14, Ustinsky proyezd, 109240, Moscow

Tel: +7–495–698–53–89



References

1. Food and Agriculture Organization of the United Nations (FAO) (2022). FAOSTAT. Crops and livestock products. Retrieved from https://www.fao.org/faostat/en/#data/QCL Accessed August 30, 2024.

2. Shim, Youn Young, Gui, B., Arnison, P. G., Wang, Y., Reaney, M. J. T. (2014). Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends in Food Science and Technology, 38(1), 5–20. https://doi.org/10.1016/j.tifs.2014.03.011

3. Bekhit, A. E.-D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Mohamed Ahmed, I. A. et al. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129–152. https://doi.org/10.1016/j.bcab.2017.11.017

4. Dzuvor, C. K. O., Taylor, J. T., Acquah, C., Pan, S., Agyei, D. (2018). Bioprocessing of functional ingredients from flaxseed. Molecules, 23(10), Article 2444. https://doi.org/10.3390/molecules23102444

5. Yang, J., Wen, C., Duan, Y., Deng, Q., Peng, D., Zhang, H. et al. (2021). The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends in Food Science and Technology, 118(Part A), 252–260. https://doi.org/10.1016/j.tifs.2021.09.025

6. Shim, Y. Y., Song, Z., Jadhav, P. D., Reaney, M. J. T. (2019). Orbitides from flaxseed (Linum usitatissimum L.): A comprehensive review. Trends in Food Science and Technology, 93, 197–211. https://doi.org/10.1016/j.tifs.2019.09.007

7. Saharan, R., Kumar, S., Khokra, S. L., Singh, S., Tiwari, A., Tiwari, V. et al. (2022). A comprehensive review on therapeutic potentials of natural cyclic peptides. Current Nutrition and Food Science, 18(5), 441–449. https://doi.org/10.2174/1573401318666220114153509

8. Xiong, Q., Lee, Y.-Y., Li, K.-Y., Li, W.-Z., Du, Y., Liu, X. et al. (2022). Status of linusorbs in cold-pressed flaxseed oil during oxidation and their response toward antioxidants. Food Research International, 161, Article 111861. https://doi.org/10.1016/j.foodres.2022.111861

9. Fojnica, A., Leis, H.-J., Murkovic, M. (2022). Identification and characterization of the stability of hydrophobic cyclolinopeptides from flaxseed oil. Frontiers in Nutrition, 9, Article 903611. https://doi.org/10.3389/fnut.2022.903611

10. Mueed, A., Madjirebaye, P., Shibli, S., Deng, Z. (2022). Flaxseed peptides and cyclolinopeptides: A critical review on proteomic approaches, biological activity, and future perspectives. Journal of Agricultural and Food Chemistry, 70(46), 14600–14612. https://doi.org/10.1021/acs.jafc.2c06769

11. Fojnica, A., Gromilic, Z., Vranic, S., Murkovic, M. (2023). Anticancer potential of the cyclolinopeptides. Cancers, 15(15), Article 3874. https://doi.org/10.3390/cancers15153874

12. Okinyo-Owiti, D. P., Burnett, P.-G. G., Reaney, M. J. T. (2014). Simulated moving bed purification of flaxseed oil orbitides: Unprecedented separation of cyclolinopeptides C and E. Journal of Chromatography B, 965, 231–237. https://doi.org/10.1016/j.jchromb.2014.06.037

13. Gui, B., Shim, Y. Y., Reaney, M. J. T. (2012). Distribution of cyclolinopeptides in flaxseed fractions and products. Journal of Agricultural and Food Chemistry, 60(35), 8580–8589. https://doi.org/10.1021/jf3023832

14. Lang, T., Frank, O., Lang, R., Hofmann, T., Behrens, M. (2022). Activation spectra of human bitter taste receptors stimulated with cyclolinopeptides corresponding to fresh and aged linseed oil. Journal of Agricultural and Food Chemistry, 70(14), 4382–4390. https://doi.org/10.1021/acs.jafc.2c00976

15. Okinyo-Owiti, D. P., Young, L., Burnett, P.-G. G., Reaney, M. J. T. (2014). New flaxseed orbitides: Detection, sequencing, and 15N incorporation. Biopolymers, 102(2), 168–175. https://doi.org/10.1002/bip.22459

16. Lao, Y. W., Mackenzie, K., Vincent, W., Krokhin, O. V. (2014). Characterization and complete separation of major cyclolinopeptides in flaxseed oil by reversedphase chromatography. Journal of Separation Science, 37(14), 1788–1796. https://doi.org/10.1002/jssc.201400193

17. Tan, N.-H., Zhou, J. (2006). Plant cyclopeptides. Chemical Reviews, 106(3), 840– 895. https://doi.org/10.1021/cr040699h

18. Kaufmann, H. P., Tobschirbel, A. (1959). About an oligopeptide from flax seeds. Chemische Berichte, 92(11), 2805–2809. https://doi.org/10.1002/cber.19590921122 (In German)

19. Deng, S., Li, J., Luo, T., Deng, Z. (2022). Flaxseed cyclic peptide [1–9-NαC]- linusorb B3 (CLA) improves oxidative stability of flaxseed oil by chelating metal ions and intermediate oxidative products. Journal of Agricultural and Food Chemistry, 70(50), 15776–15786. https://doi.org/10.1021/acs.jafc.2c06102

20. Morita, H., Shishido, A., Matsumoto, T., Takeya, K., Itokawa, H., Hirano, T. et al. (1997). A new immunosuppressive cyclic nonapeptide, cyclolinopeptide B from Linum usitatissimum. Bioorganic Medicinal Chemistry Letters, 7(10), 1269–1272. https://doi.org/10.1016/s0960-894x(97)00206-0

21. Morita, H., Shishido, A., Matsumoto, T., Itokawa, H., Takeya, K. (1999). Cyclolinopeptides B–E, new cyclic peptides from Linum usitatissimum. Tetrahedron, 55(4), 967–976. https://doi.org/10.1016/s0040-4020(98)01086-2

22. Olivia C. (2013) High Throughput Screeening of Flax (Linum usitatissimum L.) Cyclolinopeptides. Thesis Degree of Master of Science University of Saskatchewan, Saskatoon. Retrieved from https://harvest.usask.ca/items/25362000-bf73–443d80c4–22af6b940f57 Accessed August 21, 2024.

23. Matsumoto, T., Shishido, A., Morita, H., Itokawa, H., Takeya, K. (2001). Cyclolinopeptides F-I, cyclic peptides from linseed. Phytochemistry, 57(2), 251–260. https://doi.org/10.1016/s0031-9422(00)00442-8

24. Stefanowicz, P. (2004). Electrospray mass spectrometry and tandem mass spectrometry of the natural mixture of cyclic peptides from linseed. European Journal of Mass Spectrometry, 10(5), 665–671. https://doi.org/10.1255/ejms.657

25. Stefanowicz, P. (2001). Detection and sequencing of new cyclic peptides from linseed by electrospray ionization mass spectrometry. Acta Biochimica Polonica, 48(4), 1125–1129. https://doi.org/10.18388/abp.2001_3877

26. Dahiya, R., Dahiya, S., Shrivastava, J., Fuloria, N. K., Gautam, H., Mourya, R. et al. (2021). Natural cyclic polypeptides as vital phytochemical constituents from seeds of selected medicinal plants. Archiv Der Pharmazie — Chemistry in Life Sciences, 354(4), Article 2000446. https://doi.org/10.1002/ardp.202000446

27. Reaney, M. J., Jia, Y., Shen, J., Schock, C., Tyler, N., Elder. J. et al. (2008). Recovery of hydrophobic peptides from oils. Patent US No. 8383172.

28. Burnett, P.-G. G., Jadhav, P. D., Okinyo-Owiti, D. P., Poth, A. G., Reaney, M. J. T. (2015). Glycine-containing flaxseed orbitides. Journal of Natural Products, 78(4), 681–688. https://doi.org/10.1021/np5008558

29. Gui, B., Shim, Y. Y., Datla, R. S. S., Covello, P. S., Stone, S. L., Reaney, M. J. T. (2012). Identification and quantification of cyclolinopeptides in five flaxseed cultivars. Journal of Agricultural and Food Chemistry, 60(35), 8571–8579. https://doi.org/10.1021/jf301847u

30. Zou, X.-G., Chen, X.-L., Hu, J.-N., Wang, Y.-F., Gong, D.-M., Zhu, X.-M. et al. (2017). Comparisons of proximate compositions, fatty acids profile and micronutrients between fiber and oil flaxseeds (Linum usitatissimum L.). Journal of Food Composition and Analysis, 62, 168–176. https://doi.org/10.1016/j.jfca.2017.06.001

31. Wang, D. (2014). Extraction of Orbitides from Flaxseed. Thesis Degree of Master of Science University of Saskatchewan, Saskatoon. Retrieved from http://hdl.handle.net/10388/ETD2014-02-1435 Accessed August 30, 2024.

32. Aladedunye, F., Sosinska, E., Przybylski, R. (2013). Flaxseed cyclolinopeptides: Analysis and storage stability. Journal of the American Oil Chemists’ Society, 90(3), 419–428. https://doi.org/10.1007/s11746-012-2173-0

33. Burnett, P.-G. G., Olivia, C. M., Okinyo-Owiti, D. P., Reaney, M. J. T. (2016). Orbitide composition of the flax core collection (FCC). Journal of Agricultural and Food Chemistry, 64(25), 5197–5206. https://doi.org/10.1021/acs.jafc.6b02035

34. Cai, Z.-Z., Xu, C.-X., Song, Z.-L., Li, J.-L., Zhang, N., Zhao, J.-H. et al. (2024). A two-step method of cyclolinopeptide (linusorb) preparation from flaxseed cake via dry-screening. Food Chemistry, 449, Article 139243. https://doi.org/10.1016/j.foodchem.2024.139243

35. Zou, X.-G., Li, J., Sun, P.-L., Fan, Y.-W., Yang, J.-Y., Deng, Z.-Y. (2020). Orbitides isolated from flaxseed induce apoptosis against SGC7901 adenocarcinoma cells. International Journal of Food Sciences and Nutrition, 71(8), 929–939. https://doi.org/10.1080/09637486.2020.1750573

36. Zou, X.-G., Hu, J.-N., Zhu, X.-M., Wang, Y.-F., Deng, Z.-Y. (2018). Methionine sulfone-containing orbitides, good indicators to evaluate oxidation process of flaxseed oil. Food Chemistry, 250, 204–212. https://doi.org/10.1016/j.foodchem.2018.01.030

37. Zeng, J., Xiao, T., Ni, X., Wei, T., Liu, X., Deng, Z.-Y. et al. (2022). The comparative analysis of different oil extraction methods based on the quality of flaxseed oil. Journal of Food Composition and Analysis, 107, Article 104373. https://doi.org/10.1016/j.jfca.2021.104373

38. Kaneda, T., Nakajima, Y., Koshikawa, S., Nugroho, A. E., Morita, H. (2019). Cyclolinopeptide F, a cyclic peptide from flaxseed inhibited RANKLinduced osteoclastogenesis via downergulation of RANK expression. Journal of Natural Medicines, 73(3), 504–512. https://doi.org/10.1007/s11418-019-01292-w

39. Brühl, L., Bonte, A., N’Diaye, K., Matthäus, B. (2022). Oxidation of cyclo-lino peptides in linseed oils during storage. European Journal of Lipid Science and Technology, 124(12), Article 2200137. https://doi.org/10.1002/ejlt.202200137

40. Liu, X., Cai, Z.-Z., Lee, W. J., Lu, X.-X., Reaney, M. J. T., Zhang, J.-P. et al. (2021). A practical and fast isolation of 12 cyclolinopeptides (linusorbs) from flaxseed oil via preparative HPLC with phenyl-hexyl column. Food Chemistry, 351, Article 129318. https://doi.org/10.1016/j.foodchem.2021.129318

41. Brühl, L., Matthäus, B., Fehling, E., Wiege, B., Lehmann, B., Luftmann, H. et al. (2007). Identification of bitter off-taste compounds in the stored cold pressed linseed oil. Journal of Agricultural and Food Chemistry, 55(19), 7864–7868. https://doi.org/10.1021/jf071136k


Review

For citations:


Sobolev R.V., Sokolov I.E., Petrov N.A., Sarkisyan V.А., Kochetkova A.A. Methods of extraction, separation and identification of cyclic peptides from flaxseed (Linum usitatissimum L.): A review. Food systems. 2024;7(4):535-542. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-4-535-542

Views: 1091


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)