Xanthan gum: Secondary raw materials for biosynthesis, isolation and application
https://doi.org/10.21323/2618-9771-2024-7-4-515-522
Abstract
The inevitable consequence of population growth is the development of agriculture and food production, which in turn has an impact on the volumes of secondary raw materials production. The processing of these materials can present significant challenges. One of the most effective solutions to this problem is the use of microbiological synthesis to create products with high added value. A notable example is xanthan gum, a biopolymer that has been utilized in a multitude of industries, including food, oil, pharmaceutical, and medicine. The value of xanthan gum is contingent upon its distinctive physicochemical properties, particularly its capacity to enhance the viscosity of solutions. The process of obtaining xanthan gum is conducted through the fermentation of liquid high-carbon media. The primary producer is the bacterium Xanthomonas campestris, a phytopathogen of cruciferous plants, which converts carbohydrates into a biopolymer of commercial value. This literature review examines several topics related to xanthan gum and its synthesis by X. campestris, with particular attention paid to the success of obtaining the target product using food production waste and secondary agricultural raw materials.
Keywords
About the Authors
G. F. KurbanovRussian Federation
Gabdulla F. Kurbanov, Research Assistant, Laboratory of Biotechnology and Bioengineering
55, Liteiny pr., 190000, St. Petersburg
Tel.: +7–937–164–45–66
A. O. Prichepa
Russian Federation
Artem O. Prichepa, Research Assistant, Laboratory of Biotechnology and Bioengineering
55, Liteiny pr., 190000, St. Petersburg
Тел.: +7–931–588–40–14
N. Yu. Sharova
Russian Federation
Natalya Yu. Sharova, Doctor of Technical Sciences, Professor of the Russian Academy of Sciences, Deputy Director for Research
55, Liteiny pr., 190000, St. Petersburg
Тел.: +7–900–624–11–09
References
1. Scarano, P., Sciarrillo, R., Tartaglia, M., Zuzolo, D., Guarino, C. (2022). Circular economy and secondary raw materials from fruits as sustainable source for recovery and reuse. A review. Trends in Food Science and Technology, 122, 157–170. https://doi.org/10.1016/j.tifs.2022.02.003
2. Socaciu, C. (2014). Bioeconomy and green economy: European strategies, action plans and impact on life quality. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 71(1), 1–10. https://doi.org/10.15835/buasvmcn-fst:10121
3. Ramasamy, R., Subramanian, P. (2022). Bioconversion of food waste to wealth — circular bioeconomy approach. Chapter in a book: Biotechnology for Zero Waste: Emerging Waste Management Techniques, WILEY-VCH GmbH, 2022. https://doi.org/10.1002/9783527832064.ch28
4. Kircher, M. (2022). Bioeconomy of microorganisms. Chapter in a book: The Bioeconomy System, Springer, Berlin, Heidelberg, 2022. https://doi.org/10.1007/978-3-662-64415-7_6
5. Kumar Sarangi, P., Subudhi, S., Bhatia, L., Saha, K., Mudgil, D., Prasad Shadangi, K. et al. (2023). Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 30(4), 8526–8539. https://doi.org/10.1007/s11356-022-20669-1
6. Zaman, N., Safi, S. Z., Ali, S., Mustafa, G., Mahmood, R. T., Ahmad, D. et al. (2023). Circular Bioeconomy of Animal Wastes. Chapter in a book: Climate Changes Mitigation and Sustainable Bioenergy Harvest Through Animal Waste. Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-26224-1_11
7. Panda, J., Mishra, A. K., Mohanta, Y. K., Patowary, K., Rauta, P. R., Mishra, B. (2024). Exploring biopolymer for food and pharmaceuticals application in the circular bioeconomy: An agro-food waste-to-wealth approach. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-024-02452-0
8. Palaniraj, A., Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1), 1–12. https://doi.org/10.1016/j.jfoodeng.2011.03.035
9. Roine, E., Wei, W., Yuan, J., Nurmiaho-Lassila, E.-L., Kalkkinen, N., Romantschuk, M. et al. (1997). Hrp pilus: An hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences, 94(7), 3459–3464. https://doi.org/10.1073/pnas.94.7.3459
10. García-Ochoa, F., Santos, V. E., Casas, J. A., Gómez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1
11. Harding, N. E., Raffo, S., Raimondi, A., Cleary, J. M., Ielpi, L. (1993). Identification, genetic and biochemical analysis of genes involved in synthesis of sugar nucleotide precursors of xanthan gum. Journal of General Microbiology, 139(3), 447–457. https://doi.org/10.1099/00221287-139-3-447
12. Dzionek, A., Wojcieszyńska, D., Guzik, U. (2022). Use of xanthan gum for whole cell immobilization and its impact in bioremediation — a review. Bioresource Technology, 351, Article 126918. https://doi.org/10.1016/j.biortech.2022.126918
13. Viebke, C. (2006). Order-disorder conformational transition of xanthan gum. ChemInform, 37(9), 459–474. https://doi.org/10.1002/chin.200609264
14. Abbaszadeh, A., Lad, M., Janin, M., Morris, G. A., MacNaughtan, W., Sworn, G. et al. (2015). A novel approach to the determination of the pyruvate and acetate distribution in xanthan. Food Hydrocolloids, 44, 162–171. https://doi.org/10.1016/j.foodhyd.2014.08.014
15. Brunchi, C. E., Bercea, M., Morariu, S., Dascalu, M. (2016). Some properties of xanthan gum in aqueous solutions: Effect of temperature and pH. Journal of Polymer Research, 23(7), Article 123. https://doi.org/10.1007/s10965-016-1015-4
16. Xu, L., Xu, G., Liu, T., Chen, Y., Gong, H. (2013). The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohydrate Polymers, 92(1), 516–522. https://doi.org/10.1016/j.carbpol.2012.09.082
17. Ben Salah, R., Chaari, K., Besbes, S., Ktari, N., Blecker, C., Deroanne, C. et al. (2010). Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chemistry, 121(2), 627–633. https://doi.org/10.1016/j.foodchem.2009.12.077
18. Khosravi-Darani, K., Reyhani, F. S., Nasernejad, B., Farhadi, G. B. N. (2011). Bench scale production of xanthan from date extract by Xanthomonas campestris in submerged fermentation using central composite design. African Journal of Biotechnology, 10(62), 13520–13527. https://doi.org/10.5897/ajb11.018
19. Krishna Leela, J., Sharma, G. (2000). Studies on xanthan production from Xanthomonas campestris. Bioprocess Engineering, 23(6), 687–689. https://doi.org/10.1007/s004499900054
20. Stredansky, M., Conti, E. (1999). Xanthan production by solid state fermentation. Process Biochemistry, 34(6–7), 581–587. https://doi.org/10.1016/S0032-9592(98)00131-9
21. Salah, R. B., Chaari, K., Besbes, S., Blecker, C., Attia, H. (2011). Production of xanthan gum from Xanthomonas campestris NRRL B1459 by fermentation of date juice palm by-products (Phoenix dactylifera L.). Journal of Food Process Engineering, 34(2), 457–474. https://doi.org/10.1111/j.1745-4530.2009.00369.x
22. Kurbanoglu, E. B., Kurbanoglu, N. I. (2007). Ram horn hydrolysate as enhancer of xanthan production in batch culture of Xanthomonas campestris EBK4 isolate. Process Biochemistry, 42(7), 1146–1149. https://doi.org/10.1016/J.PROCBIO.2007.04.010
23. Rončević, Z., Grahovac, J., Dodić, S., Vučurović, D., Dodić, J. (2019). Utilisation of winery wastewater for xanthan production in stirred tank bioreactor: Bioprocess modelling and optimisation. Food and Bioproducts Processing, 117, 113–125. https://doi.org/10.1016/j.fbp.2019.06.019
24. Papi, R. M., Ekateriniadou, L. V., Beletsiotis, E., Typas, M. A., Kyriakidis, D. A. (1999). Xanthan gum and ethanol production by Xanthomonas campestris and Zymomonas mobilis from peach pulp. Biotechnology Letters, 21(1), 39–43. https://doi.org/10.1023/A:1005450529032
25. Moravej, R., Alavi, S. M., Azin, M., Salmanian, A. H. (2020). Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of xanthomonas citri subsp. citri. Ukrainian Biochemical Journal, 92(1), 92–102. https://doi.org/10.15407/ubj92.01.092
26. Crugeira, P. J. L., Almeida, H. H. S., Marcet, I., Rendueles, M., Pires, M. G., Rafael, H. M. et al. (2023). Biosynthesis of antioxidant xanthan gum by Xanthomonas campestris using substrates added with moist olive pomace. Food and Bioproducts Processing, 141, 210–218. https://doi.org/10.1016/j.fbp.2023.08.008
27. Niknezhad, S. V., Asadollahi, M. A., Zamani, A., Biria, D., Doostmohammadi, M. (2015). Optimization of xanthan gum production using cheese whey and response surface methodology. Food Science and Biotechnology, 24(2), 453–460. https://doi.org/10.1007/s10068-015-0060-9
28. Gilani, S. L., Heydarzadeh, H. D., Mokhtarian, N., Alemian, A., Kolaei, M. (2011). Effect of preparation conditions on xanthan gum production and rheological behavior using cheese whey by Xanthomonas campestris. Australian Journal of Basic and Applied Sciences, 5(10), 855–859.
29. Ozdal, M., Kurbanoglu, E. B. (2018). Valorisation of chicken feathers for xanthan gum production using Xanthomonas campestris MO03. Journal of Genetic Engineering and Biotechnology, 16(2), 259–263. https://doi.org/10.1016/j.jgeb.2018.07.005
30. Li, P., Li, T., Zeng, Y., Li, X., Jiang, X., Wang, Y. et al. (2016). Biosynthesis of xanthan gum by Xanthomonas campestris LRELP1 using kitchen waste as the sole substrate. Carbohydrate Polymers, 151, 684–691. https://doi.org/10.1016/j.carbpol.2016.06.017
31. Amenaghawon, A. N., Igemhokhai, S., Eshiemogie, S. A., Ugbodu, F., Evbarunegbe, N. I. (2024). Data-driven intelligent modeling, optimization, and global sensitivity analysis of a xanthan gum biosynthesis process. Heliyon, 10(3), Article e25432. https://doi.org/10.1016/j.heliyon.2024.E25432
32. Bhat, I. M., Wani, S. M., Mir, S. A., Masoodi, F. A. (2022). Advances in xanthan gum production, modifications and its applications. Biocatalysis and Agricultural Biotechnology, 42, Article 102328. https://doi.org/10.1016/j.bcab.2022.102328
33. Wang, Z., Wu, J., Zhu, L., Zhan, X. (2016). Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol. Bioresource Technology, 211, 390– 397. https://doi.org/10.1016/j.biortech.2016.03.096
34. Gunasekar, V., Reshma, K. R., Treesa, G., Gowdhaman, D., Ponnusami, V. (2014). Xanthan from sulphuric acid treated tapioca pulp: Influence of acid concentration on xanthan fermentation. Carbohydrate Polymers, 102(1), 669–673. https://doi.org/10.1016/j.carbpol.2013.11.006
35. Chetia, R., Bharadwaj, B., Dey, R., Chatterji, B. P. (2023). The production of xanthan from brewer’s spent grain. Microbiology and Biotechnology Letters, 51(4), 449–456. https://doi.org/10.48022/mbl.2309.09007
36. Cancella, M. J., Cerqueira, A. F. L. W., Teodoro, L. da C., Pereira, J. R., Ludwig, Z. M. da C., Anjos, V. de C. et al. (2024). Xanthan gum produced from milk permeate and deproteinized cheese whey: A comparative analysis with commercial xanthan gums. Biocatalysis and Agricultural Biotechnology, 56, Article 103053. https://doi.org/10.1016/j.bcab.2024.103053
37. Infee Sherley, K., Priyadharshini, R. D. (2015). Review on production of Xanthan gum in batch and continuous reactors. International Journal of ChemTech Research, 8(2), 711–717.
38. Lopes Lessa, V., Aurélio Da Silva Carvalho, M., Gustavo Lacerda, L. (2015). Xanthan gum: Properties, production conditions, quality and economic perspective. Journal of Food and Nutrition Research, 54(3), 185–194.
39. Esgalhado, M. E., Roseiro, J. C., Collaço, M. T. A. (1995). Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris. Process Biochemistry, 30(7), 667–671. https://doi.org/10.1016/0032-9592(94)00044-1
40. Bradshaw, I. J., Nisbet, B. A., Kerr, M. H., Sutherland, I. W. (1983). Modified xanthan–its preparation and viscosity. Carbohydrate Polymers, 3(1), 23–38. https://doi.org/10.1016/0144-8617(83)90010-3
41. Tako, M., Nakamura, S. (1984). Rheological properties of deacetylated xanthan in aqueous media. Agricultural and Biological Chemistry, 48(12), 2987–2993. https://doi.org/10.1080/00021369.1984.10866637
42. Sujithra, M., Rajkumar, P.V.N., Poorani, J.H.V. (2019). Occurrence of nesting whitefly Paraleyrodes minei Iaccarino (Hemiptera: Aleyrodidae) in India. Indian Journal of Entomology, 81(3), 507–510. https://doi.org/10.5958/0974-8172.2019.00109.3
43. García-Ochoa, F., Santos, V. E., Alcón, A. (1996). Simulation of xanthan gum production by a chemically structured kinetic model. Mathematics and Computers in Simulation, 42(2–3), 187–195. https://doi.org/10.1016/0378-4754(95)00113-1
44. Seviour, R. J., McNeil, B., Fazenda, M. L., Harvey, L. M. (2010). Operating bioreactors for microbial exopolysaccharide production. Critical Reviews in Biotechnology, 31(2), 170–185. https://doi.org/10.3109/07388551.2010.505909
45. Becker, A., Katzen, F., Pühler, A., Ielpi, L. (1998). Xanthan gum biosynthesis and application: A biochemical /genetic perspective. Applied Microbiology and Biotechnology, 50(2), 145–152. https://doi.org/10.1007/s002530051269
46. Li, Z.-X., Deng, H.-Q., Jiang, J., He, Z.-Q., Li, D.-M., Ye, X.-G. et al. (2024). Effect of hydrothermal treatment on the rheological properties of xanthan gum. International Journal of Biological Macromolecules, 270, Article 132229. https://doi.org/10.1016/j.ijbiomac.2024.132229
47. Garcı́a-Ochoa, F., Castro, E., Santos, V. E. (2000). Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 27(9), 680–690. https://doi.org/10.1016/s0141-0229(00)00272-6
48. Cofelice, M., Messia, M. C., Marconi, E., Cuomo, F., Lopez, F. (2023). Effect of the xanthan gum on the rheological properties of alginate hydrogels. Food Hydrocolloids, 142, Article 108768. https://doi.org/10.1016/j.foodhyd.2023.108768
49. García-Ochoa, F., Santos, V. E., Casas, J. A. (1999). Production and isolation of xanthan gum. Chapter in a book: Carbohydrate Biotechnology Protocols. Humana Press, 1999. https://doi.org/10.1007/978-1-59259-261-6_2
50. Kumar, P., Kumar, B., Gihar, S., Kumar, D. (2024). Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydrate Research, 538, Article 109070. https://doi.org/10.1016/j.carres.2024.109070
51. Butschle, M., Lindner, S., Schackmann, M., Dam-Johansen, K. (2024). Towards improved antifouling: Exploring xanthan gum hydrogel coatings. Progress in Organic Coatings, 188, Article 108197. https://doi.org/10.1016/j.porgcoat.2023.108197
52. Nordin, N.Z., Rashidi, A.R., Dailin, D.J., Malek, R.A., Azelee, N.I.W., Abd Manas, N.H. et al. (2020). Xanthan biopolymer in pharmaceutical and cosmeceutical applications: Critical review. Bioscience Research, 17(1), 205–220.
53. Sorze, A., Valentini, F., Dorigato, A., Pegoretti, A. (2023). Development of a xanthan gum based superabsorbent and water retaining composites for agricultural and forestry applications. Molecules, 28(4), Article 1952. https://doi.org/10.3390/molecules28041952
54. Zhou, W., Hui, Y. H., De Leyn, I., Pagani, M. A., Rosell, C. M., Selman, J. D. et al. (2014). Bakery products science and technology: Second Edition. John Wiley and Sons, Ltd. 2014. https://doi.org/10.1002/9781118792001
55. Howis, J., Nalepa, M., Gołofit, T., Spychalski, M., Laudańska-Maj, A., Gadomska-Gajadhur, A. (2023). Pseudo-gel ternary systems of xanthan gum in waterethanol solutions for industrial applications. Ceramics International, 49(11), 18825–18835. https://doi.org/10.1016/j.ceramint.2023.03.004
56. Rather, J. A., Akhter, N., Rather, S. A., Masoodi, F. A., Dar, B. N. (2024). Effect of xanthan gum treatment on the shelf-life enhancement of retorted meatballs (Goshtaba): A traditional meat product of India. Measurement: Food, 13, Ar ticle 100127. https://doi.org/10.1016/j.meafoo.2023.100127
57. Candido da Silva, L. C., Targino, B. N., Furtado, M. M., de Oliveira Pinto, M. A., Rodarte, M. P., Hungaro, H. M. (2017). Xanthan: Biotechnological production and applications. Chapter in a book: Microbial Production of Food Ingredients and Additives. Academic Press, 2017. https://doi.org/10.1016/B978-0-12-811520-6.00013-1
58. Gago-Guillán, M., García-Otero, X., Anguiano-Igea, S., Otero-Espinar, F. J. (2023). Compression pressure-induced synergy in xanthan and locust bean gum hydrogels. Effect in drug delivery. Journal of Drug Delivery Science and Technology, 89, Article 105025. https://doi.org/10.1016/j.jddst.2023.105025
59. Rakshit, P., Giri, T. K., Mukherjee, K. (2024). Research progresses on carboxymethyl xanthan gum: Review of synthesis, physicochemical properties, rheological characterization and applications in drug delivery. International Journal of Biological Macromolecules, 266, Article 131122. https://doi.org/10.1016/j.ijbiomac.2024.131122
60. Rahmatpour, A., Shoghinia, B., Alizadeh, A. H. (2024). A self-assembling hydrogel nanocomposite based on xanthan gum modified with SiO2 NPs and HPAM for improved adsorption of crystal violet cationic dye from aqueous solution. Carbohydrate Polymers, 330, Article 121819. https://doi.org/10.1016/j.carbpol.2024.121819
61. Kumar, A., Prabha, M., Tiwari, P., Malviya, T., Singh, V. (2024). Xanthan gumcapped Chromia Nanoparticles (XG-CrNPs): A promising nanoprobe for the detection of heavy metal ions. International Journal of Biological Macromolecules, 266, Article 131192. https://doi.org/10.1016/j.ijbiomac.2024.131192
62. Li, X., Wang, Z., Liu, Y., Liu, R., Wang, Z., Zhang, C. et al. (2024). Properties of cement grout doped with xanthan gum and welan gum at high hydration temperatures. Construction and Building Materials, 420, Article 135664. https://doi.org/10.1016/j.conbuildmat.2024.135664
63. Yu, X., Han, L., Xu, Q., Li, S., Prakash, S., Dong, X. (2024). Enhanced rheological and 3Dprinting properties of high internal phase emulsions stabilized by egg white microgels synergized with konjac gum/xanthan gum. Food Hydrocolloids, 153, Article 109981. https://doi.org/10.1016/j.foodhyd.2024.109981
Review
For citations:
Kurbanov G.F., Prichepa A.O., Sharova N.Yu. Xanthan gum: Secondary raw materials for biosynthesis, isolation and application. Food systems. 2024;7(4):515-522. https://doi.org/10.21323/2618-9771-2024-7-4-515-522