1. Glinkina, I. M., Ryzhkov, E. I. (2020). Analysis of the current state of the Russian market of semi-finished meat products in dough. Technologies and Commodity Science of Agricultural Products, 1, 28-32. (In Russian)]
2. Kurbangalieva, A. A. (2021). Export of Russian finished meat products to the Kazakhstan market: Opportunities and challenges. Theory and Practice of World Science, 4, 26-27. (In Russian)]
3. Embling, R., Neilson, L., Mellor, C., Durodola, M., Rouse, N., Haselgrove, A. et al. (2024). Exploring consumer beliefs about novel fortified foods: A focus group study with UK-based older and younger adult consumers. Appetite, 193, Article 107139. https://doi.org/10.1016/j.appet.2023.107139
4. O’shea, P. (2015). Dodgy dumplings and lethal liver: Risk, food terrorism, and Sino-Japanese relations. The Pacific Review, 28(2), 303-321. https://doi.org/10.1080/09512748.2014.995128
5. Li, Z., Wang, L., Chen, Z., Yu, Q., Feng, W. (2018). Impact of protein content on processing and texture properties of waxy rice flour and glutinous dumpling. Journal of Cereal Science, 81, 30-36. https://doi.org/10.1016/j.jcs.2018.03.005
6. Zhu, Q., Liang, Y., Shao, Z. (2015). Dumpling cooking-modeling and simulation. IFAC-PapersOnLine, 48(8), 439-444. https://doi.org/10.1016/j.ifacol.2015.09.007
7. Varlamov, A., Zhou, Z., Chen, Y. (2018). Boiling, steaming or rinsing? (physics of the Chinese cuisine). arXiv preprint arXiv:1806.09912. https://doi.org/10.48550/arXiv.1806.09912
8. Deng, L. (2013). Kinetic functions, optimizing model and definition of «Huoho» for Chinese cooking. Transactions of the Chinese Society of Agricultural Engineering, 29(4), 278-284. (In Chinese)
9. Chavez-Gonzalez, M. L., Balagurusamy, N., Aguilar, C. (2019). Advances in food bioproducts and bioprocessing technologies. CRC Press, 2019. https://doi.org/10.1201/9780429331817
10. Sheen, S., Huang, L., Hwang, C.-A. (2024) Numerical simulation of heat transfer during meat ball cooking and microbial food safety enhancement. Journal of Food Science, 89(3), 1632-1641. https://doi.org/10.1111/1750-3841.16949
11. Park, J. H., Kim, E. M. (2013). Quality characteristics of dumpling shell added with white lotus leaf powder. Culinary Science and Hospitality Research, 19(2), 1-10. https://doi.org/10.20878/cshr.2013.19.2.001 (In Korean)
12. Kim, J.-G., Kim, J.-S. (2013). Changes of internal temperature during the cooking process of dumpling (Mandu). Korean Journal of Human Ecology, 22(3), 485-492. https://doi.org/10.5934/kjhe.2013.22.3.485 (In Korean)
13. Fomenko, E. V., Nugmanov, A. Kh. Kh. (2019). Velocity control of visco-elastic materials movement in the cylindrical channel of the grinder feed screw of the former. Food Processing: Techniques and Technology, 49(1), 113-119. (In Russian)] https://doi.org/10.21603/2074-9414-2019-1-113-119
14. Olivera, D. F., Salvadori, V. O. (2008). Finite element modeling of food cooking. Latin American Applied Research, 38(4), 377-383.
15. Purlis, E., Salvadori, V.O. (August 14-18, 2005). Meat cooking simulation by finite elements. 2nd Mercosur Congress on Chemical Engineering, 4th Mercosur Congress on Process Systems Engineering. Rio de Janeiro, 2005.
16. Park, S., An, J., Lee, J. (2023). Consumer acceptability and texture analysis of frozen dumplings using different cooking methods. Food Science and Biotechnology, 33(4), 877-887. https://doi.org/10.1007/s10068-023-01389-9
17. Tang, J. (2015). Unlocking potentials of microwaves for food safety and quality. Journal of Food Science, 80(8), E1776-E1793. https://doi.org/10.1111/1750-3841.12959
18. Mortimer R. G. (2008). Physical Chemistry. Academic Press, 2008.
19. Gorbachev, V. V., Nikitin, I. A., Velina, D. A., Mutallibzoda, SH., Balashova, M. S. (2022). Assessment of consumer preferences of Russians: “Average ration trap”. Izvestiya Vuzov. Food Technology, 6(390), 90-98. (In Russian)]
20. Tikhonov, A. N., Samarskii, A. A. (2013). Equations of mathematical physics. Edwin Mellen Press, 2013.
21. Ren, Q., Zhu, X., Li, J., Han, J., Fang, K. (2023). Heat and mass transfer model for pork carcass precooling: Comprehensive evaluation and optimization. Food and Bioproducts Processing, 138, 70-85. https://doi.org/10.1016/j.fbp.2023.01.004
22. Belyaeva, M. A. (2004). Mathematical descriptions of denaturation of meat myosin, actin, tropomyosin, myoglobin in the process of heat treatment. Izvestiya Vuzov. Food Technology, 5-6, 63-65. (In Russian)]
23. Spiess, W., Walz, E., Nesvadba, P., Morley, M., Haneghem, Salmon, D.R. (2001). Thermal conductivity of food materials at elevated temperatures. High Temperatures - High Pressures, 33, 693-697.
24. Engchuan, W., Jittanit, W. (2013). Electrical and thermo-physical properties of meat ball. International Journal of Food Properties, 16(8), 1676-1692. https://doi.org/10.1080/10942912.2011.604891
25. Karpushin, V. A., Vishneva, N. V. (2014). Verification of an interaction model of an ultrasonic oscillatory system with periodontal tissues. Mechanical Engineering and Computer Technologies, 1, 70-82. (In Russian)]
26. Mesalhy, O., Lafdi, K., Elgafy, A., Bowman, K. (2005). Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Conversion and Management, 46(6), 847-867. https://doi.org/10.1016/j.enconman.2004.06.010
27. Sun, W., Ma, H., Qu, W. (2024). A hybrid numerical method for non-linear transient heat conduction problems with temperature - dependent thermal conductivity. Applied Mathematics Letters, 148, Article 108868. https://doi.org/10.1016/j.aml.2023.108868
28. Reddy, S. R., Dulikravich, G. S. (2019). Simultaneous determination of spatially varying thermal conductivity and specific heat using boundary temperature measurements. Inverse Problems in Science and Engineering, 27(11), 1635-1649. https://doi.org/10.1080/17415977.2019.1578352
29. Beckers, K. F., Koch, D. L., Tester, J. W. (2015). Slender-body theory for transient heat conduction: Theoretical basis, numerical implementation and case studies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2184), Article 20150494. https://doi.org/10.1098/rspa.2015.0494
30. Harvey, A. H., Hrubý, J., Meier, K. (2023). Improved and always improving: Reference formulations for thermophysical properties of water. Journal of Physical and Chemical Reference Data, 52(1), Article 011501. https://doi.org/10.1063/5.0125524
31. Li, X., Lv, Y., Chen, Y., Chen, J. (2016). A study on the relationship between rheological properties of wheat flour, gluten structure, and dumpling wrapper quality. International Journal of Food Properties, 19(7), 1566-1582. https://doi.org/10.1080/10942912.2014.951894
32. Yasin, M., Hina, S., Naz, R. (2023). A modern study on peristaltically induced flow of Maxwell fluid considering modified Darcy’s law and Hall effect with slip condition. Alexandria Engineering Journal, 76, 835-850. https://doi.org/10.1016/j.aej.2023.06.074
33. Zhang, L., Doursat, C., Vanin, F. M., Flick, D., Lucas, T. (2017). Water loss and crust formation during bread baking, Part I: Interpretation aided by mathematical models with highlights on the role of local porosity. Drying Technology, 35(12), 1506-1517. https://doi.org/10.1080/07373937.2016.1260029
34. Patil, P. N., Sawant, D. V., Deshmukh, R. N. (2012). Physico-chemical parameters for testing of water - A review. International Journal of Environmental Sciences, 3(3), 1194-1207.
35. Alshevsky, D. L., Smirnova, D. O. (2021). Development of a recipe for semi-finished meat products using vegetable, gluten-free raw materials. Science and Education, 4(2), Article 300. (In Russian)]
36. Pangacheva, Yu.S., Esepenok, K. V. (2024). Assessing the quality of turkey meat pelmeni sold in Moscow retail chains. Food Products Commodity Expert, 4, 215-219. (In Russian)] https://doi.org/10.33920/igt-01-2404-04