Preview

Food systems

Advanced search

Hemp (Cannabis sativa L.) seeds nutritional aspects and food production perspectives: A review

https://doi.org/10.21323/2618-9771-2024-7-1-52-58

Abstract

This review is devoted to an analysis of the hemp (Cannabis sativa L.) seeds’ nutritional aspects and food production perspectives, that can become a valuable source of multifunctional components for functional food production. Cannabis sativa L. is a multipurpose crop with lowenvironmental impact traditionally cultivated in Western cultures for fiber production. The propagation of synthetic fibers and the production of intoxicating drugs from certain narcotic strains resulted in the banning of its cultivation. Thus, culturing the varieties that are widely known as „industrial hemp“ has only been practiced for the past two decades. Hemp (Cannabis sativa L.) is grown not only for its economic importance but also for the seeds’ nutritional value. Hemp seeds consists of 25–35% lipids with perfectly balanced fatty acids (FAs); 20–25% proteins, which are easy to digest and contain all essential amino acids; 20–30% carbohydrates, mainly dietary fiber; and vitamins and minerals. Besides its nutritional value, hempseed is also rich in antioxidants and bioactive compounds such as bioactive peptides, polyphenols with high free radicals scavenging activity, and cannabinoids. Therefore, this study reviews the scientific knowledge about Cannabis sativa L. seeds and their progressive aspects of cultivation, functional and therapeutic potential, and its use in functional food production.

About the Authors

T. N. Capcanari
Technical University of Moldova
Moldova, Republic of

Tatiana N. Capcanari, PhD, Associate Professor, Food and Nutrition Department, Technical University. of Moldova
168, Stefan cel Mare bd, Chisinau, Republic of Moldova, MD-2004
Tel.: +3–736–991–77–74



E. F. Covaliov
Technical University of Moldova
Moldova, Republic of

Eugenia F. Covaliov, PhD, Associate Professor, Food and Nutrition Department, Technical University. of Moldova
168, Stefan cel Mare bd, Chisinau, Republic of Moldova, MD-2004
Tel.: +3–736–997–52–77



C. Lu. Negoița
Technical University of Moldova
Moldova, Republic of

Сătălina Iu. Negoița, PhD student, Food and Nutrition Department, Technical University of Moldova.
168, Stefan cel Mare bd, Chisinau, Republic of Moldova, MD-2004
Tel.: +3–737–895–00–05



References

1. Farinon, B., Molinari, R., Costantini, L., Merendino, N. (2020). The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients, 12(7), Article 1935. https://doi.org/10.3390/nu12071935

2. Landucci, E., Mazzantini, C., Lana, D., Davolio, P. L., Giovannini, M. G., Pellegrini-Giampietro, D. E. (2021). Neuroprotective effects of cannabidiol but not δ9-tetrahydrocannabinol in rat hippocampal slices exposed to oxygen-glucose deprivation: Studies with cannabis extracts and selected cannabinoids. International Journal of Molecular Sciences, 22(18), Article 9773. https://doi.org/10.3390/ijms22189773

3. Stasiłowicz-Krzemień, A., Sip, S., Szulc, P., Cielecka-Piontek, J. (2023). Determining antioxidant activity of cannabis leaves extracts from different varieties — unveiling nature’s treasure trove. Antioxidants, 12(7), Article 1390. https://doi.org/10.3390/antiox12071390

4. Golia, E. E., Bethanis, J., Ntinopoulos, N., Kaffe, G.-G., Komnou, A. A., Vasilou, C. (2023). Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustainable Chemistry and Pharmacy, 31, Article 100961. https://doi.org/10.1016/j.scp.2022.100961

5. Negoița, C., Capcanari, T., Chirsanova, A., Covaliov, E., Siminiuc, R. (June 3, 2022). The agro-industrial potential of Cannabis Sativa L. cultivation in the Republic of Moldova. International Scientific Conference «Perspectives and Problems of Integration in the European Research and Education Area, Cahul, Republic of Moldova, 2022.

6. Eurostat. (2023). Hemp production in the EU. Agriculture and rural development. Retrieved from https://agriculture.ec.europa.eu/farming/crop-productions-andplant-based-products/hemp_en Accessed September 16, 1023

7. Baldini, M., Ferfuia, C., Zuliani, F., Danuso, F. (2020). Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Industrial Crops and Products, 143, Article 111860. https://doi.org/10.1016/j.indcrop.2019.111860

8. Kaur, G., Kander, R. (2023). The sustainability of industrial hemp: A literature review of its economic, environmental, and social sustainability. Sustainability, 15(8), Article 6457. https://doi.org/10.3390/su15086457

9. Veit, D. (2023). Bast Fibers. Chapter in a book: Fibers. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-15309-9_6

10. Small, E. (2015). Evolution and classification of Cannabis sativa (Marijuana, Hemp) in relation to human utilization. The Botanical Review, 81(3), 189–294. https://doi.org/10.1007/s12229-015-9157-3

11. Shen, P., Gao, Z., Fang, B., Rao, J., Chen, B. (2021). Ferreting out the secrets of industrial hemp protein as emerging functional food ingredients. Trends in Food Science and Technology, 1–15. https://doi.org/10.1016/j.tifs.2021.03.022

12. Capcanari, T., Chirsanova, A., Negoița, C., Covaliov, E., Siminiuc, R. (October 20–22, 2022). Agro-industrial potential of Cannabis Sativa L. seeds as a source of biological active substances. International Conference Modern Technologies in the Food Industry, TUM, Chisinau, 2022.

13. Rusu, I.-E., Marc (Vlaic), R. A., Mureşan, C. C., Mureşan, A. E., Filip, M. R., Onica, B.-M. et al. (2021). Advanced characterization of hemp flour (Cannabis sativa L.) from dacia secuieni and zenit varieties, compared to wheat flour. Plants, 10(6), Article 1237. https://doi.org/10.3390/plants10061237

14. Crini, G., Lichtfouse, E., Chanet, G., Morin-Crini, N. (2020). Traditional and New Applications of Hemp. Chapter in a book: Sustainable Agriculture Reviews 42. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-03041384-2_2

15. Alonso-Esteban, J. I., González-Fernández, M. J., Fabrikov, D., de Cortes SánchezMata, M., Torija-Isasa, E., Guil-Guerrero, J. L. (2023). Fatty acids and minor functional compounds of hemp (Cannabis sativa L.) seeds and other Cannabaceae species. Journal of Food Composition and Analysis, 115, Article 104962. https://doi.org/10.1016/j.jfca.2022.104962

16. Golimowski, W., Teleszko, M., Zając, A., Kmiecik, D., Grygier, A. (2023). Effect of the bleaching process on changes in the fatty acid profile of raw hemp seed oil (Cannabis sativa). Molecules, 28(2), Article 769. https://doi.org/10.3390/molecules28020769

17. Chen, T., He, J., Zhang, J., Li, X., Zhang, H., Hao, J., Li, L. (2012). The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chemistry, 134(2), 1030–1037. https://doi.org/10.1016/j.foodchem.2012.03.009

18. Liu, M., Childs, M., Loos, M., Taylor, A., Smart, L. B., Abbaspourrad, A. (2023). The effects of germination on the composition and functional properties of hemp seed protein isolate. Food Hydrocolloids, 134, Article 108085. https://doi.org/10.1016/j.foodhyd.2022.108085

19. Sciacca, F., Virzì, N., Pecchioni, N., Melilli, M. G., Buzzanca, C., Bonacci, S. et al. (2023). Functional end-use of hemp seed waste: Technological, qualitative, nutritional, and sensorial characterization of fortified bread. Sustainability, 15(17), Article 12899. https://doi.org/10.3390/su151712899

20. Tura, M., Mandrioli, M., Valli, E., Toschi, T.G. (2023). Quality indexes and composition of 13 commercial hemp seed oils. Journal of Food Composition and Analysis, 117, Article 105112. https://doi.org/10.1016/j.jfca.2022.105112

21. Aloo, S. O., Kwame, F. O., Oh, D.-H. (2023). Identification of possible bioactive compounds and a comparative study on in vitro biological properties of whole hemp seed and stem. Food Bioscience, 51, Article 102329. https://doi.org/10.1016/j.fbio.2022.102329

22. Burton, R. A., Andres, M., Cole, M., Cowley, J. M., Augustin, M. A. (2022). Industrial hemp seed: From the field to value-added food ingredients. Journal of Cannabis Research, 4(1), Article 45. https://doi.org/10.1186/s42238-022-00156-7

23. Smułek, W., Jarzębski, M. (2023). Hemp seed oil nanoemulsion with Sapindus saponins as a potential carrier for iron supplement and vitamin D. Reviews on Advanced Materials Science, 62(1), Article 20220317. https://doi.org/10.1515/rams-2022-0317

24. Rupasinghe, H. P. V., Davis, A., Kumar, S. K., Murray, B., Zheljazkov, V. D. (2020). Industrial hemp (Cannabis sativa subsp. Sativa) as an emerging source for valueadded functional food ingredients and nutraceuticals. Molecules, 25(18), Article 4078. https://doi.org/10.3390/molecules25184078

25. Vigil, J. M., Montera, M. A., Pentkowski, N. S., Diviant, J. P., Orozco, J., Ortiz, A. L. et al. (2020). The therapeutic effectiveness of full spectrum hemp oil using a chronic neuropathic pain model. Life, 10(5), Article 69. https://doi.org/10.3390/life10050069

26. Vonapartis, E., Aubin, M.-P., Seguin, P., Mustafa, A. F., Charron, J.-B. (2015). Seed composition of ten industrial hemp cultivars approved for production in Canada. Journal of Food Composition and Analysis, 39, 8–12. https://doi.org/10.1016/j.jfca.2014.11.004

27. Mattila, P., Mäkinen, S., Eurola, M., Jalava, T., Pihlava, J.-M., Hellström, J. et al. (2018). Nutritional value of commercial protein-rich plant products. Plant Foods for Human Nutrition, 73(2), 108–115. https://doi.org/10.1007/s11130-018-0660-7

28. Callaway, J. C. (2004). Hempseed as a nutritional resource: An overview. Euphytica, 140, 65–72. https://doi.org/10.1007/s10681-004-4811-6

29. Lan, Y., Zha, F., Peckrul, A., Hanson, B., Johnson, B., Rao, J. et al. (2019). Genotype x environmental effects on yielding ability and seed chemical composition of industrial hemp (Cannabis sativa L.) varieties grown in North Dakota, USA. Journal of the American Oil Chemists’ Society, 96(12), 1417–1425. https://doi.org/10.1002/aocs.12291

30. Makovicky, P., Makovicky, P., Caja, F., Rimarova, K., Samasca, G., Vannucci, L. (2020). Celiac disease and gluten-free diet: Past, present, and future. Gastroenterology and Hepatology from Bed to Bench, 13(1), 1–7.

31. Amaducci, S., Zatta, A., Pelatti, F., Venturi, G. (2008). Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field Crops Research, 107(2), 161–169. https://doi.org/10.1016/j.fcr.2008.02.002

32. Palomares-Navarro, M. J., Sánchez-Quezada, V., Palomares-Navarro, J. J., AyalaZavala, J. F., Loarca-Piña, G. (2023). Nutritional and nutraceutical properties of selected pulses to promote gluten-free food products. Plant Foods for Human Nutrition, 78(2), 253–260. https://doi.org/10.1007/s11130-023-01060-y

33. Liu, M., Toth, J. A., Childs, M., Smart, L. B., Abbaspourrad, A. (2023). Composition and functional properties of hemp seed protein isolates from various hemp cultivars. Journal of Food Science, 88(3), 942–951. https://doi.org/10.1111/1750-3841.16467

34. Capcanari, T., Covaliov, E., Negoița, C., Siminiuc, R., Chirsanova, A., Reșitca, V. Et al. (2023). Hemp seed cake flour as a source of proteins, minerals and polyphenols and its impact on the nutritional, sensorial and technological quality of bread. Foods, 12, Article 4327. https://doi.org/10.3390/foods12234327

35. Burton, R.A., Andres, M., Cole, M., Cowley, J.M., Augustin, M.A. (2022). Industrial hemp seed: From the field to value-added food ingredients. Journal of Cannabis Research, 4, Article 45. https://doi.org/10.1186/s42238-022-00156-7

36. Al Ubeed, H. M. S., Brennan, C. S., Schanknecht, E., Alsherbiny, M. A., Saifullah, M., Nguyen, K. et al. (2022). Potential applications of hemp (Cannabis sativa L.) extracts and their phytochemicals as functional ingredients in food and medicinal supplements: A narrative review. International Journal of Food Science and Technology, 57(12), 7542–7555. https://doi.org/10.1111/ijfs.16116

37. Neacsu, M., Christie, J. S., Duncan, G. J., Vaughan, N. J., Russell, W. R. (2022). Buckwheat, fava bean and hemp flours fortified with anthocyanins and other bioactive phytochemicals as sustainable ingredients for functional food development. Nutraceuticals, 2(3), 150–161. https://doi.org/10.3390/nutraceuticals2030011

38. Amaral, J. S., Casal, S., Pereira, J. A., Seabra, R. M., Oliveira, B. P. P. (2003). Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in portugal. Journal of Agricultural and Food Chemistry, 51(26), 7698–7702. https://doi.org/10.1021/jf030451d

39. Porto, C. D., Decorti, D., Natolino, A. (2015). Potential oil yield, fatty acid composition, and oxidation stability of the hempseed oil from four Cannabis sativa L. cultivars. Journal of Dietary Supplements, 12(1), 1–10. https://doi.org/10.3109/19390211.2014.887601

40. Siano, F., Moccia, S., Picariello, G., Russo, G., Sorrentino, G., Di Stasio, M. et al. (2018). Comparative study of chemical, biochemical characteristic and ATR-FTIR analysis of seeds, oil and flour of the edible fedora cultivar hemp (Cannabis sativa L.). Molecules, 24(1), Article 83. https://doi.org/10.3390/molecules24010083

41. Kriese, U., Schumann, E., Weber, W. E., Beyer, M., Brühl, L., Matthäus. (2004). Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica, 137(3), 339–351. https://doi.org/10.1023/B: EUPH.0000040473.23941.76

42. Malomo, S., Onuh, J., Girgih, A., Aluko, R. (2015). Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates. Nutrients, 7(9), 7616–7632. https://doi.org/10.3390/nu7095358

43. Chen, H., Xu, B., Wang, Y., Li, W., He, D., Zhang, Y. et al. (2023). Emerging natural hemp seed proteins and their functions for nutraceutical applications. Food Science and Human Wellness, 12(4), 929–941. https://doi.org/10.1016/j.fshw.2022.10.016

44. Tang, C.-H., Ten, Z., Wang, X.-S., Yang, X.-Q. (2006). Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate. Journal of Agricultural and Food Chemistry, 54(23), 8945–8950. https://doi.org/10.1021/jf0619176

45. Choo, W.-S., Birch, J., Dufour, J.-P. (2007). Physicochemical and quality characteristics of cold-pressed flaxseed oils. Journal of Food Composition and Analysis, 20(3–4), 202–211. https://doi.org/10.1016/j.jfca.2006.12.002

46. Banskota, A. H., Tibbetts, S. M., Jones, A., Stefanova, R., Behnke, J. (2022). Biochemical characterization and in vitro digestibility of protein isolates from hemp (Cannabis sativa L.) by-products for salmonid feed applications. Molecules, 27(15), Article 4794. https://doi.org/10.3390/molecules27154794

47. Reggio, P.H. (2003). Pharmacophores for ligand recognition and activation / inactivation of the cannabinoid receptors. Current Pharmaceutical Design, 9(20), 1607–1633. https://doi.org/10.2174/1381612033454577

48. Rizzo, G., Storz, M. A., Calapai, G. (2023). The role of hemp (Cannabis sativa L.) as a functional food in vegetarian nutrition. Foods, 12(18), Article 3505. https://doi.org/10.3390/foods12183505

49. House, J. D., Neufeld, J., Leson, G. (2010). Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibilitycorrected amino acid score method. Journal of Agricultural and Food Chemistry, 58(22), 11801–11807. https://doi.org/10.1021/jf102636b

50. Schultz, C. J., Lim, W. L., Khor, S. F., Neumann, K. A., Schulz, J. M., Ansari, O. et al. (2020). Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. Journal of Agriculture and Food Research, 2, Article 100025. https://doi.org/10.1016/j.jafr.2020.100025

51. Mattila, P. H., Pihlava, J.-M., Hellström, J., Nurmi, M., Eurola, M., Mäkinen, S. et al. (2018). Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Quality and Safety, 2(4), 213–219. https://doi.org/10.1093/fqsafe/fyy021

52. Alonso-Esteban, J. I., Torija-Isasa, M. E., de Cortes Sánchez-Mata, M. (2022). Mineral elements and related antinutrients, in whole and hulled hemp (Cannabis sativa L.) seeds. Journal of Food Composition and Analysis, 109, Article 104516. https://doi.org/10.1016/j.jfca.2022.104516

53. Bernstein, N., Gorelick, J., Zerahia, R., Koch, S. (2019). Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Frontiers in Plant Science, 10, Article 736. https://doi.org/10.3389/fpls.2019.00736

54. Rubilar, M., Gutiérrez, C., Verdugo, M., Shene, C., Sineiro, J. (2010). Flaxseed as a source of functional ingredients. Journal of Soil Science and Plant Nutrition, 10(3). 373–377. https://doi.org/10.4067/S0718-95162010000100010

55. Ma, Z. F., Zhang, H., Teh, S. S., Wang, C. W., Zhang, Y., Hayford, F. et al. (2019). Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxidative Medicine and Cellular Longevity, 2019, Article 2437397. https://doi.org/10.1155/2019/2437397

56. Smeriglio, A., Galati, E. M., Monforte, M. T., Lanuzza, F., D’Angelo, V., Circosta, C. (2016). Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from finola cultivar of Cannabis sativa L. Phytotherapy Research, 30(8), 1298–1307. https://doi.org/10.1002/ptr.5623

57. Frassinetti, S., Moccia, E., Caltavuturo, L., Gabriele, M., Longo, V., Bellani, L. et al. (2018). Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chemistry, 262, 56–66. https://doi.org/10.1016/j.foodchem.2018.04.078

58. Moccia, S., Siano, F., Russo, G. L., Volpe, M. G., La Cara, F., Pacifico, S. et al. (2020). Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L., Fedora cv.) in human colorectal cell lines. International Journal of Food Sciences and Nutrition, 71(4), 410–423. https://doi.org/10.1080/09637486.2019.1666804

59. Russo, R., Reggiani, R. (2013). Variability in antinutritional compounds in hempseed meal of Italian and French varieties. Plant, 1(2), 25–29. https://doi.org/10.11648/j.plant.20130102.13

60. Yu, L. L., Zhou, K. K., Parry, J. (2005). Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chemistry, 91(4), 723–729. https://doi.org/10.1016/j.foodchem.2004.06.044

61. Bourjot, M., Zedet, A., Demange, B., Pudlo, M., Girard-Thernier, C. (2016). In Vitro mammalian arginase inhibitory and antioxidant effects of amide derivatives isolated from the hempseed cakes (Cannabis sativa). Planta Medica International Open, 3(03), e64–e67. https://doi.org/10.1055/s-0042-119400

62. Luo, Q., Yan, X., Bobrovskaya, L., Ji, M., Yuan, H., Lou, H. et al. (2017). Antineuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. Molecular and Cellular Biochemistry, 428(1–2), 129–137. https://doi.org/10.1007/s11010-016-2923-7

63. Maiolo, S. A., Fan, P., Bobrovskaya, L. (2018). Bioactive constituents from cinnamon, hemp seed and polygonum cuspidatum protect against H2O2 but not rotenone toxicity in a cellular model of Parkinson’s disease. Journal of Traditional and Complementary Medicine, 8(3), 420–427. https://doi.org/10.1016/j.jtcme.2017.11.001

64. Wang, S., Luo, Q., Fan, P. (2019). Cannabisin F from hemp (Cannabis sativa) seed suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia as SIRT1 modulator. International Journal of Molecular Sciences, 20(3), Article 507. https://doi.org/10.3390/ijms20030507

65. Yan, X., Tang, J., dos Santos Passos, C., Nurisso, A., Simões-Pires, C. A., Ji, M. et al. (2015). Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. Journal of Agricultural and Food Chemistry, 63(49), 10611–10619. https://doi.org/10.1021/acs.jafc.5b05282

66. Pontonio, E., Verni, M., Dingeo, C., Diaz-de-Cerio, E., Pinto, D., Rizzello, C. G. (2020). Impact of enzymatic and microbial bioprocessing on antioxidant properties of hemp (Cannabis sativa L.). Antioxidants, 9(12), Article 1258. https://doi.org/10.3390/antiox9121258

67. Teh, S.-S., Bekhit, A. E.-D. A., Carne, A., Birch, J. (2016). Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain. Food Chemistry, 203, 199–206. https://doi.org/10.1016/j.foodchem.2016.02.057

68. Logarušić, M., Slivac, I., Radošević, K., Bagović, M., Redovniković, I. R., Srček, V. G. (2019). Hempseed protein hydrolysates’ effects on the proliferation and induced oxidative stress in normal and cancer cell lines. Molecular Biology Reports, 46(6), 6079–6085. https://doi.org/10.1007/s11033-019-05043-8

69. Rodriguez-Martin, N. M., Toscano, R., Villanueva, A., Pedroche, J., Millan, F., Montserrat-de La Paz, S. et al. (2019). Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds. Food and Function, 10(10), 6732–6739. https://doi.org/10.1039/C9FO01904A

70. Zanoni, C., Aiello, G., Arnoldi, A., Lammi, C. (2017). Hempseed peptides exert hypocholesterolemic effects with a statin-like mechanism. Journal of Agricultural and Food Chemistry, 65(40), 8829–8838. https://doi.org/10.1021/acs.jafc.7b02742

71. Palmer, S. L., Thakur, G. A., Makriyannis, A. (2002). Cannabinergic ligands. Chemistry and Physics of Lipids, 121(1–2), 3–19. https://doi.org/10.1016/S00093084(02)00143-3

72. Iversen, L. (2003). Cannabis and the brain. Brain, 126(6), 1252–1270. https://doi.org/10.1093/brain/awg143

73. Harding, E. K., Souza, I. A., Gandini, M. A., Gadotti, V. M., Ali, M. Y., Huang, S. et al. (2023). Differential regulation of Cav3.2 and Cav2.2 calcium channels by CB1 receptors and cannabidiol. British Journal of Pharmacology, 180(12), 1616–1633. https://doi.org/10.1111/bph.16035

74. Román-Vargas, Y., Porras-Arguello, J. D., Blandón-Naranjo, L., Pérez-Pérez, L. D., Benjumea, D. M. (2023). Evaluation of the analgesic effect of high-cannabidiolcontent cannabis extracts in different pain models by using polymeric micelles as vehicles. Molecules, 28(11), Article 4299. https://doi.org/10.3390/molecules28114299

75. Wu, J.-H., Saseendrakumar, B.R., Moghimi, S., Sidhu, S., Kamalipour, A., Weinreb, R. N. et al. (2023). Epidemiology and factors associated with cannabis use among patients with glaucoma in the All of Us research program. Heliyon, 9(5), Article e15811. https://doi.org/10.1016/j.heliyon.2023.e15811

76. Ried, K., Tamanna, T., Matthews, S., Sali, A. (2023). Medicinal cannabis improves sleep in adults with insomnia: A randomised double-blind placebo-controlled crossover study. Journal of Sleep Research, 32(3), Article e13793. https://doi.org/10.1111/jsr.13793

77. Nduma, B. N., Mofor, K. A., Tatang, J., Ekhator, C., Ambe, S., Fonkem, E. (2023). The use of cannabinoids in the treatment of inflammatory bowel disease (IBD): A review of the literature. Cureus,15(3), Article e36148. https://doi.org/10.7759/cureus.36148


Review

For citations:


Capcanari T.N., Covaliov E.F., Negoița C.L. Hemp (Cannabis sativa L.) seeds nutritional aspects and food production perspectives: A review. Food systems. 2024;7(1):52-58. https://doi.org/10.21323/2618-9771-2024-7-1-52-58

Views: 893


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)