Preview

Food systems

Advanced search

lexible sensors for food monitoring. Part II: Applications

https://doi.org/10.21323/2618-9771-2024-7-1-4-14

Abstract

Monitoring and maintaining food quality, safety, and authenticity are the most important concerns in the food industry. The cutting-edge flexible sensors for food monitoring precisely satisfy the needs of acquiring information on multiple parameters in a small space, they provide for the more reasonable layout, get data on the mechanical deformations, and can be conformably attached to arbitrarily curved surfaces. The flexible sensing materials with a large area of specific surface, that ensure high mobility and density of the media, feature dense active sites, outstanding adjustability and high processing capacities, such as two-dimensional carbon nanomaterials, conductive polymers, and nano-hybrid materials; those materials have further improved the sensitivity, stability and selectivity of the flexible sensors’ perception. This article attempts to critically review the present state-of-arts developments in relation to the materials, manufacturing techniques and sensing mechanisms of the devices, as well as the applications of the electrically-transduced flexible sensors. Moreover, this article elaborates on the transduction mechanisms of the several typical transducers, with a focus on the physics behind, including the modulation of the doping level, Schottky barrier, and interfacial layer that typically cause changes in conductivity, functionality and permittivity. We also highlight the benefits and the technical challenges along with the appropriate solutions provided by the presented flexible sensors, and we also consider the potential strategies that allow overcoming limitations in power consumption, quantitatively assess the trade-offs in maintaining the quality and marketability, to optimize wireless communication and explore new sensing patterns.

About the Authors

D. Luo
College of Engineering, China Agricultural University
China

Dongjie Luo, Bachelor
Beijing, 100083
Tel.: +86–1305–120–91–54



M. A. Nikitina
V.M. Gorbatov Federal Research Center for Foods Systems
Russian Federation

Marina A. Nikitina, Doctor of Technical Sciences, Docent, Leading Scientific Worker, the Head of the Direction of Information Technologies of the Center of Economic and Analytical Research and Information Technologies, V. M. Gorbatov Federal Research Center for Food Systems
26, Talalikhina str., 109316, Moscow
Tel: +7–495–676–95–11 extension 297



X. Xiao
College of Engineering, China Agricultural University
Russian Federation

Xinqing Xiao, Doctor of Engineering, Associate Professor, Beijing Laboratory of Food Quality and Safety
Beijing, 100083
Tel.: +86–158–0122–7781



References

1. Xiao, X., Mu, B., Cao, G. (2021). Light-energy-harvested flexible wireless temperature-sensing patch for food cold storage. Acs Applied Electronic Materials, 3(7), 3015–3022. https://doi.org/10.1021/acsaelm.1c00251

2. Fu, B., Labuza, T.P. (1992). Considerations for the application of time-temperature integrators in food distribution. Journal of Food Distribution Research, 23(1), 9–18. http://doi.org/10.22004/ag.econ.27193

3. Heard, B.R., Miller, Sh.A. (2018). Potential changes in greenhouse gas emissions from refrigerated supply chain introduction in a developing food system. Environmental Science and Technology, 53(1), 251–260. https://doi.org/10.1021/acs.est.8b05322

4. Müssig, S., Granath, T., Schembri, T., Fidler, F., Haddad, D., Hille, r K.-H. et al. (2019). Anisotropic magnetic supraparticles with a magnetic particle spectroscopy fingerprint as indicators for cold-chain breach. ACS Applied Nano Materials, 2(8), 4698–4702. https://doi.org/10.1021/acsanm.9b00977

5. Xiao, X., Li, Z., Matetic, M., Bakaric, M.B., Zhang, X. (2017). Energy-efficient sensing method for table grapes cold chain management. Journal of Cleaner Production, 152, 77–87. https://doi.org/10.1016/j.jclepro.2017.03.090

6. Taoukis, P.S., Koutsoumanis, K., Nychas, G.J.E. (1999). Use of timetemperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. International Journal of Food Microbiology, 53(1), 21–31. https://doi.org/10.1016/s0168-1605(99)00142-7

7. Russell, N.J. (2002). Bacterial membranes: The effects of chill storage and food processing. An overview. International Journal of Food Microbiology, 79(1–2), 27–34. https://doi.org/10.1016/s0168-1605(02)00176-9

8. Escobedo, P., Bhattacharjee, M., Nikbakhtnasrabadi, F., Dahiya, R. (2021). Flexible strain and temperature sensing NFC tag for smart food packaging applications. IEEE Sensors Journal, 21(23), 26406–26414. https://doi.org/10.1109/JSEN.2021.3100876

9. Nohria, R., Khillan, R.K., Su, Y., Dikshit, R., Lvov, Y., Varahramyan, K. (2006). Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sensors and Actuators B: Chemical, 114(1), 218–222. https://doi.org/10.1016/j.snb.2005.04.034

10. Ayala-Zavala, J.F., Del-Toro-Sánchez, L., Alvarez-Parrilla, E., González-Aguilar, G.A. (2008). High relative humidity in-package of fresh-cut fruits and vegetables: Advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? Journal of Food Science, 73(4), R41-R47. https://doi.org/10.1111/j.1750-3841.2008.00705.x

11. Yousefi, H., Su, H.M., Imani, S.M., Alkhaldi, K., Filipe, C. D. M., Didar, T. F. (2019). Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sensors, 4(4), 808–821. https://doi.org/10.1021/acssensors.9b00440

12. McDaniel, C., Baker, R.C. (1977). Convenience food packaging and the perception of product quality. Journal of Marketing, 41(4), 57–58. https://doi.org/10.1177/002224297704100406

13. Maddanimath, T., Mulla, I.S., Sainkar, S.R., Vijayamohanan, K., Shaikh, K.I., Patilet, A.S. et al. (2002). Humidity sensing properties of surface functionalised polyethylene and polypropylene films. Sensors and Actuators B: Chemical, 81(2– 3), 141–151. https://doi.org/10.1016/S0925-4005(01)00944-3

14. Molina-Lopez, F., Briand, D., De Rooij, N.F. (2012). All additive inkjet printed humidity sensors on plastic substrate. Sensors and Actuators B: Chemical, 166–167, 212–222. https://doi.org/10.1016/j.snb.2012.02.042

15. Sarig, Y. (2000). Potential applications of artificial olfactory sensing for quality evaluation of fresh produce. Journal of Agricultural Engineering Research, 77(3), 239–258.

16. Kress-Rogers, E., Brimelow, Ch.J.B. (2001). Instrumentation and sensors for the food industry. Vol. 65. Woodhead Publishing. 2001.

17. Ribeiro, P., Cardoso, S., Bernardino, A., Jamone, L. (October 24, 2020). Fruit quality control by surface analysis using a bio-inspired soft tactile sensor. Proceeding of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA. https://doi.org/10.1109/IROS45743.2020.9340955

18. Xia, J., Wang, X., Zhang, J., Kong, C., Huang, W., Zhang, X. (2022). Flexible dualmechanism pressure sensor based on Ag nanowire electrodes for nondestructive grading and quality monitoring of fruits. ACS Applied Nano Materials, 5(8), 10652–10662. https://doi.org/10.1021/acsanm.2c01968.s001

19. Kar, E., Bose, N., Dutta, B., Mukherjee, N., Mukherjee, S. (2019). Ultraviolet-and microwave-protecting, self-cleaning e-skin for efficient energy harvesting and tactile mechanosensing. ACS Applied Materials and Interfaces, 11(19), 17501– 17512. https://doi.org/10.1021/acsami.9b06452

20. Nychas, G.-J.E., Skandamis, P.N., Tassou, Ch.C., Koutsoumanis, K.P. (2008). Meat spoilage during distribution. Meat Science, 78(1–2), 77–89. https://doi.org/10.1016/j.meatsci.2007.06.020

21. Yoshida, C.M.P., Maciel, V.B.V., Mendonça, M.E.D., Franco, T.T. (2014). Chitosan biobased and intelligent films: Monitoring pH variations. LWT-Food Science and Technology, 55(1), 83–89. https://doi.org/10.1016/j.lwt.2013.09.015

22. Weston, M., Geng, S., Chandrawati, R. (2021). Food sensors: Challenges and opportunities. Advanced Materials Technologies, 6(5), Article 2001242. https://doi.org/10.1002/admt.202001242

23. Huang, W.D., Deb, S., Seo, Y.S., Rao, S., Chiao, M., Chiao, J. C. (2011). A passive radio-frequency pH-sensing tag for wireless food-quality monitoring. IEEE Sensors Journal, 12(3), 487–495. https://doi.org/10.1109/JSEN.2011.2107738

24. Xiao, X., Mu, B., Cao, G., Yang, Y., Wang, M. (2022). Flexible battery-free wireless electronic system for food monitoring. Journal of Science: Advanced Materials and Devices, 7(2), Article 100430. https://doi.org/10.1016/j.jsamd.2022.100430

25. Chen, Z., Cotterell, B., Wang, W., Guenther, E., Chua, S.-J. (2001). A mechanical assessment of flexible optoelectronic devices. Thin Solid Films, 394(1–2), 201– 205. https://doi.org/10.1016/S0040-6090(01)01138-5

26. Peng, C., Jia, Z., Bianculli, D., Li, T., Lou, J. (2011). In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates. Journal of Applied Physics, 109(10), Article 103530. https://doi.org/10.1063/1.3592341

27. Park, S.K., Jeong, I.H., Dae, G.M., Won, K.K. (2003). Mechanical stability of externally deformed indium–tin–oxide films on polymer substrates. Japanese Journal of Applied Physics, 42(2R), Article 623. https://doi.org/10.1143/JJAP.42.623

28. Yu, H.K., Dong, W.J., Jung, G.H., Lee, J.-L. (2011). Three-dimensional nanobranched indium-tin-oxide anode for organic solar cells. ACS Nano, 5(10), 8026– 8032. https://doi.org/10.1021/nn2025836

29. Hu, J., Stein, A., Bühlmann, P. (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends in Analytical Chemistry, 76, 102–114. https://doi.org/10.1016/j.trac.2015.11.004

30. Harris, D.C. (2010). Quantitative Chemical Analysis. W. H. Freeman and Company, New York. 2010.

31. Meng, Z., Stolz, R.M., Mendecki, L., Mirica, K.A. (2019). Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chemical Reviews, 119(1), 478–598. https://doi.org/10.1021/acs.chemrev.8b00311

32. Kim, G.T., Paik, H.D., Lee, D.S. (2003). Effect of different oxygen permeability packaging films on the quality of sous-vide processed seasoned spinach soup. Food Science and Biotechnology, 12(3), 312–315.

33. Mills, A. (2005). Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 34(12), 1003–1011. https://doi.org/10.1039/b503997p

34. Won, S., Won, K. (2021). Self-powered flexible oxygen sensors for intelligent food packaging. Food Packaging and Shelf Life, 29, Article 100713. https://doi.org/10.1016/j.fpsl.2021.100713

35. King, A.D., Nagel, C.W. (1967). Growth inhibition of a Pseudomonas by carbon dioxide. Journal of Food Science, 32(5), 575–579. https://doi.org/10.1111/j.1365-2621.1967.tb00836.x

36. Ammor, S., Tauveron, G., Dufour, E., Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility: 1Screening and characterization of the antibacterial compounds. Food Control, 17(6), 454–461. https://doi.org/10.1016/j.foodcont.2005.02.006

37. Sivertsvik, M., Rosnes, J.T., Bergslien, H. (2002). Modified atmosphere packaging. Minimal Processing Technologies in The Food Industry. Chapter in a book: Minimal Processing Technologies in the Food Industries. Woodhead Publishing Ltd. United Kingdom. 2002. https://doi.org/10.1533/9781855736795.61

38. Coyne, F.P. (1933). The effect of carbon dioxide on bacteria growth. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 113(782), 196–217. https://doi.org/10.1098/rspb.1933.0041

39. Shahrbabaki, Z., Farajikhah, S., Ghasemian, M.B., Oveissi, F., Rath, R.J., Yun, J. et al. (2023). A Flexible and Polymer-Based Chemiresistive CO2 Gas Sensor at Room Temperature. Advanced Materials Technologies, 8(10), Article 2201510. https://doi.org/10.1002/admt.202201510

40. Cunningham, M.F., Jessop, P.G. (2016). An introduction to the principles and fundamentals of CO2-switchable polymers and polymer colloids. European Polymer Journal, 76, 208–215. https://doi.org/10.1016/j.eurpolymj.2016.01.036

41. Liu, S., Armes, S.P. (2003). Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer. Langmuir, 19(10), 4432–4438. https://doi.org/10.1021/la020951l

42. Shahrbabaki, Z., Oveissi, F., Farajikhah, S., Ghasemian, M.B., Jansen-van Vuuren, R.D., Jessopet, P.G. et al. (2022). Electrical Response of Poly (N-[3(dimethylamino) Propyl] Methacrylamide) to CO2 at a Long Exposure Period. ACS Omega, 7(26), 22232–22243. https://doi.org/10.1021/acsomega.2c00914

43. Alshamrani, A.K., Vanderveen, J.R., Jessop, P.G. (2016). A guide to the selection of switchable functional groups for CO2-switchable compounds. Physical Chemistry Chemical Physics, 18(28), 19276–19288. https://doi.org/10.1039/c6cp03302d

44. Liu, H., Lin, S., Feng, Y., Theato, P. (2017). CO2-responsive polymer materials. Polymer Chemistry, 8(1), 12–23. https://doi.org/10.1039/C6PY01101B

45. Liu, H., Zhao, Y., Dreiss, C.A., Feng, Y. (2014). CO2-switchable multi-compartment micelles with segregated corona. Soft Matter, 10(34), 6387–6391. https://doi.org/10.1039/c4sm01207k

46. Yan, Q., Zhao, Y. (2013). CO2-stimulated diversiform deformations of polymer assemblies. Journal of the American Chemical Society, 135(44), 16300–16303. https://doi.org/10.1021/ja408655n

47. Cunningham, M.F., Jessop, P.G. (2019). Carbon dioxide-switchable polymers: Where are the future opportunities? Macromolecules, 52(18), 6801–6816. https://doi.org/10.1021/acs.macromol.9b00914

48. Cai, C., Mo, J., Lu, Y., Zhang, N., Wu, Z., Wang, S. et al. (2021). Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy, 83, Article 105833. https://doi.org/10.1016/j.nanoen.2021.105833

49. Silva, N.F.D., Almeida, C.M.R., Magalhães, J.M.C.S., Gonçalves, M.P., Freire, C., Delerue-Matos, C. (2019). Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosensors and Bioelectronics, 141, Article 111317. https://doi.org/10.1016/j.bios.2019.111317

50. Ma, Z., Chen, P., Cheng, W., Yan, K., Pan, L., Shiet, Y. et al. (2018). Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Letters, 18(7), 4570–4575. https://doi.org/10.1021/acs.nanolett.8b01825

51. Matindoust, S., Farzi, A., Baghaei, N.M., Shahrokh Abadi, M.H., Zou, Z., Zheng, L.-R. (2017). Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods. Journal of Materials Science: Materials in Electronics, 28, 7760–7768. https://doi.org/10.1007/s10854-017-6471-z

52. Matindoust, S., Baghaei-Nejad, M., Shahrokh Abadi, M.H., Zou, Z., Zheng, L.-R. (2016). Food quality and safety monitoring using gas sensor array in intelligent packaging. Sensor Review, 36(2), 169–183. https://doi.org/10.1108/SR-07-2015-0115

53. Tang, N., Zhou, C., Xu, L., Jiang, Y., Qu, H., Duan, X. (2019). A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sensors, 4(3), 726–732. https://doi.org/10.1021/acssensors.8b01690

54. Blackwood, D., Josowicz, M. (1991). Work function and spectroscopic studies of interactions between conducting polymers and organic vapors. The Journal of Physical Chemistry, 95(1), 493–502. https://doi.org/10.1021/j100154a086

55. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., Poh, H.L. (2010). Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29(9), 954–965. https://doi.org/10.1016/j.trac.2010.05.011

56. Javey, A., Kong, J. (2009). Carbon nanotube electronics. Springer Science and Business Media, LLC. New York, NY, United States. 2009.

57. Yan, H., Zhao, G., Lu, W., Hu, C., Wang, X., Liu, G. et al. (2023). A flexible and wearable paper-based chemiresistive sensor modified with SWCNTs-PdNPspolystyrene microspheres composite for the sensitive detection of ethylene gas: A new method for the determination of fruit ripeness and corruption. Analytica Chimica Acta, 1239, Article 340724. https://doi.org/10.1016/j.aca.2022.340724

58. Lelièvre, J.-M., Latchè, A., Jones, B., Bouzayen, M., Pech, J.-C. (1997). Ethylene and fruit ripening. Physiologia Plantarum, 101(4), 727–739. https://doi.org/10.1111/j.1399-3054.1997.tb01057.x

59. Saraiva, L.A., Castelan, F.P., Gomes, B.L., Purgatto, E., Cordenunsi-Lysenko, B.R. (2018). Thap Maeo bananas: Fast ripening and full ethylene perception at low doses. Food Research International, 105, 384–392. https://doi.org/10.1016/j.foodres.2017.11.007

60. Cristescu, S.M., Mandon, J., Arslanov, D., De Pessemier, J., Hermans, C., Harren, F.J.M. (2013). Current methods for detecting ethylene in plants. Annals of Botany, 111(3), 347–360. https://doi.org/10.1093/aob/mcs259

61. Amalric-Popescu, D., Bozon-Verduraz, F. (2001). Infrared studies on SnO2 and Pd/SnO2. Catalysis Today, 70(1–3), 139–154. https://doi.org/10.1016/S09205861(01)00414-X

62. Kovtunov, K.V., Beck, I.E., Zhivonitko, V.V., Barskiy, D.A., Bukhtiyarov, V.I., Koptyug, I.V. (2012). Heterogeneous addition of H2 to double and triple bonds over supported Pd catalysts: A parahydrogen-induced polarization technique study. Physical Chemistry Chemical Physics, 14(31), 11008–11014. https://doi.org/10.1039/c2cp40690j

63. Fei, H., Wu, G., Cheng, W.Y., Yan, W., Xu, H., Zhang, D. et al. (2019). Enhanced NO2 sensing at room temperature with graphene via monodisperse polystyrene bead decoration. ACS Omega, 4(2), 3812–3819. https://doi.org/10.1021/acsomega.8b03540

64. Esser, B., Schnorr, J.M., Swager, T.M. (2012). Selective detection of ethylene gas using carbon nanotube-based devices: Utility in determination of fruit ripeness. Angewandte Chemie International Edition, 51(23), 5752–5756. https://doi.org/10.1002/anie.201201042

65. Liu, P., Sun, Q., Zhu, F., Liu, K., Jiang, K., Liu, L. et al. (2008). Measuring the work function of carbon nanotubes with thermionic method. Nano Letters, 8(2), 647–651. https://doi.org/10.1021/nl0730817

66. Yu, T., Cheng, X.L., Zhang, X., Sui L., Xu, Y., Gao, S. et al. (2015). Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. Journal of Materials Chemistry A, 3(22), 11991–11999. https://doi.org/10.1039/C5TA00811E

67. Zhao, Q., Duan, Z., Yuan, Z., Li, X., Wang, S., Liuet, B. et al. (2020). High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection. Chinese Chemical Letters, 31(8), 2045–2049. https://doi.org/10.1016/j.cclet.2020.04.032

68. Wang, S., Xiao, B., Yang, T., Wang, P., Xiao, C., Li, Z. et al. (2014). Enhanced HCHO gas sensing properties by Ag-loaded sunflower-like In2O3 hierarchical nanostructures. Journal of Materials Chemistry A, 2(18), 6598–6604. https://doi.org/10.1039/C3TA15110G

69. Li, B., Li, M., Meng, F., Liu, J. (2019). Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous α-Fe2O3. Sensors and Actuators B: Chemical, 290, 396–405. https://doi.org/10.1016/j.snb.2019.04.002

70. Bartolucci, C., Antonacci, A., Arduini, F., Moscone, D., Fraceto, L., Camposet, E. et al. (2020). Green nanomaterials fostering agrifood sustainability. TrAC Trends in Analytical Chemistry, 125, Article 115840. https://doi.org/10.1016/j.trac.2020.115840

71. Karimian, N., Fakhri, H., Amidi, S., Hajian, A., Arduinie, F., Bagheri, H. (2019). A novel sensing layer based on metal-organic framework UiO-66 modified with TiO2-graphene oxide: Application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New Journal of Chemistry, 43(6), 2600–2609. https://doi.org/10.1039/C8NJ06208K

72. Aulakh, J.S., Malik, A.K., Kaur, V., Schmitt-Kopplin, P. (2005). A Review on solid phase micro extraction-high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Critical Reviews in Analytical Chemistry, 35(1), 71–85. https://doi.org/10.1080/10408340590947952

73. Di Tuoro, D., Portaccio, M., Lepore, M., Arduini, F., Moscone, D., Bencivengaet, U. al. (2011). An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. New Biotechnology, 29(1), 132–138. https://doi.org/10.1016/j.nbt.2011.04.011

74. Dias, E., de Costa, F.G., Morais, S., de Lourdes Pereira, M. (2015). A review on the assessment of the potential adverse health impacts of carbamate pesticides. Chapter in a book: Topics in Public Health. IntechOpen Limited, London, United Kingdom. 2015. https://doi.org/10.5772/59613

75. Dömötörová, M., Matisová, E. (2008). Fast gas chromatography for pesticide residues analysis. Journal of Chromatography A, 1207(1–2), 1–16. https://doi.org/10.1016/j.chroma.2008.08.063

76. Romanholo, P.V.V., Razzino, C.A., Raymundo-Pereira, P.A., Prado, T.M., Machado, S.A.S., Sgobbi, L.F. (2021). Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosensors and Bioelectronics, 185, Article 113242. https://doi.org/10.1016/j.bios.2021.113242

77. Paschoalin, R.T., Gomes, N.O., Almeida, G.F., Bilatto, S., Farinas, C.S., Machadoet, S.A.S. et al. (2022). Wearable sensors made with solution-blow spinning poly (lactic acid) for non-enzymatic pesticide detection in agriculture and food safety. Biosensors and Bioelectronics, 199, Article 113875. https://doi.org/10.1016/j.bios.2021.113875

78. Zhu, X., Lin, L., Wu, R., Zhu, Y., Sheng, Y., Nie, P. et al. (2021). Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosensors and Bioelectronics, 179, Article 113062. https://doi.org/10.1016/j.bios.2021.113062

79. Zheng, W., Zhang, P., Chen, J., Tian, W. B., Zhang, Y. M., Sun, Z. M. (2018). In situ synthesis of CNTs@ Ti3C2 hybrid structures by microwave irradiation for highperformance anodes in lithium ion batteries. Journal of Materials Chemistry A, 6(8), 3543–3551. https://doi.org/10.1039/C7TA10394H

80. Guo, X., Zhang, W., Zhang, J., Zhou, D., Tang, X., Xuet, X. et al. (2020). Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano, 14(3), 3651–3659. https://doi.org/10.1021/acsnano.0c00177

81. Bard, A.J., Faulkner, L.R., White, H.S. (2022). Electrochemical methods: Fundamentals and applications. John Wiley and Sons. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto. 2022.

82. Dmitrienko, S.G., Kochuk, E.V., Apyari, V.V., Tolmacheva, V.V., Zolotov, Y.A. (2014). Recent advances in sample preparation techniques and methods of sulfonamides detection — A review. Analytica Chimica Acta, 850, 6–25. https://doi.org/10.1016/j.aca.2014.08.023

83. Baran, W., Adamek, E., Ziemiańska, J., Sobczak, A. (2011). Effects of the presence of sulfonamides in the environment and their influence on human health. Journal of Hazardous Materials, 196, 1–15. https://doi.org/10.1016/j.jhazmat.2011.08.082

84. García-Galán, M.J., Díaz-Cruz, M.S., Barceló, D. (2009). Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. Trac Trends in Analytical Chemistry, 28(6), 804–819. https://doi.org/10.1016/j.trac.2009.04.006

85. Valderas, M.W., Andi, B., Barrow, W.W., Cook, P.F. (2008). Examination of intrinsic sulfonamide resistance in Bacillus anthracis: A novel assay for dihydropteroate synthase. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(5), 848–853. https://doi.org/10.1016/j.bbagen.2008.02.003

86. Fekadu, S., Alemayehu, E., Dewil, R., Van der Bruggen, B. (2019). Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Science of the Total Environment, 654, 324–337. https://doi.org/10.1016/j.scitotenv.2018.11.072

87. Liu, L., Wan, Q., Xu, X., Duan, S., Yang, C. (2017). Combination of micelle collapse and field-amplified sample stacking in capillary electrophoresis for determination of trimethoprim and sulfamethoxazole in animal-originated foodstuffs. Food Chemistry, 219, 7–12. https://doi.org/10.1016/j.foodchem.2016.09.118

88. Xue, W., Li, F., Zhou, Q. (2019). Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell. Bioresource Technology, 289, Article 121632. https://doi.org/10.1016/j.biortech.2019.121632

89. Ou, Y., Yao, L., Li, Y., Bai, C., Luque, R., Peng, G. (2020). Magnetically separable Fe-MIL-88B_NH2 carbonaceous nanocomposites for efficient removal of sulfamethoxazole from aqueous solutions. Journal of Colloid and Interface Science, 570, 163–172. https://doi.org/10.1016/j.jcis.2020.02.116

90. Fatta-Kassinos, D., Meric, S., Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399, 251–275. https://doi.org/10.1007/s00216-010-4300-9

91. Zeng, Y., Li, Q., Wang, W., Wen, Y., Ji, K., Liu, X. et al. (2022). The fabrication of a flexible and portable sensor based on home-made laser-induced porous graphene electrode for the rapid detection of sulfonamides. Microchemical Journal, 182, Article 107898. https://doi.org/10.1016/j.microc.2022.107898

92. Nayak, P., Kurra, N., Xia, C., Alshareef, H.N. (2016). Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Advanced Electronic Materials, 2(10), Article 1600185. https://doi.org/10.1002/aelm.201600185

93. Bakker, E., Telting-Diaz, M. (2002). Electrochemical sensors. Analytical Chemistry, 74(12), 2781–2800. https://doi.org/10.1021/ac0202278

94. FDA, U.S. (2013). Guidance for industry. Bioanalytical method validation. Retrieved from https://ag-lab.org/sites/default/files/pdf/media/1/Bioanalytical%20method%20validation%20for%20industry.pdf Accessed August 15, 2023

95. Abadias, M., Usall, J., Anguera, M., Solsona, C., Viñas, I. (2008). Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. International Journal of Food Microbiology, 123(1–2), 121–129. https://doi.org/10.1016/j.ijfoodmicro.2007.12.013

96. Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.-A., Royet, S.L. et al. (2011). Foodborne illness acquired in the United States-major pathogens. Emerging Infectious Diseases, 17(1), 7–15. https://doi.org/10.3201/eid1701.p11101

97. Law, J.W.F., Ab Mutalib, N.S., Chan, K.G., Lee, L.-H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, Article 770. https://doi.org/10.3389/fmicb.2014.00770

98. Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. (2010). An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 28(2), 232–254. https://doi.org/10.1016/j.biotechadv.2009.12.004

99. Silva, N.F.D., Magalhães, J.M.C.S., Barroso, M.F., Oliva-Teles, T., Freire, C., Delerue-Matos, C. (2019). In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection. Talanta, 194, 134–142. https://doi.org/10.1016/j.talanta.2018.10.024

100. Soares, R.R.A., Hjort, R.G., Pola, C.C., Parate, K., Reis, E.L., Soares, N.F.F. et al. (2020). Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sensors, 5(7), 1900–1911. https://doi.org/10.1021/acssensors.9b02345

101. Garland, N.T., McLamore, E.S., Cavallaro, N.D., Mendivelso-Perez, D., Smith, E.A., Jing, D. et al. (2018). Flexible laser-induced graphene for nitrogen sensing in soil. ACS Applied Materials and Interfaces, 10(45), 39124–39133. https://doi.org/10.1021/acsami.8b10991

102. Dos Santos, M.B., Azevedo, S., Agusil, J.P., Prieto-Simón, B., Sporer, C., Torrents, E. et al. (2015). Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry, 101, 146–152. https://doi.org/10.1016/j.bioelechem.2014.09.002

103. Mutreja, R., Jariyal, M., Pathania, P., Sharma, A., Sahoo, D.K., Suriet, C.R. (2016). Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Biosensors and Bioelectronics, 85, 707–713. https://doi.org/10.1016/j.bios.2016.05.079

104. Ding, S., Mosher, С., Lee, X.Y., Das, S.R., Cargill, A.A., Tang, X. et al. (2017). Rapid and label-free detection of interferon gamma via an electrochemical aptasensor comprising a ternary surface monolayer on a gold interdigitated electrode array. ACS Sensors, 2(2), 210–217. https://doi.org/10.1021/acssensors.6b00581

105. Ruecha, N., Shin, K., Chailapakul, O., Rodthongkum, N. (2019). Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sensors and Actuators B: Chemical, 279, 298–304. https://doi.org/10.1016/j.snb.2018.10.024

106. Marrs, T.C. (2012). Mammalian toxicology of insecticides. Royal Society of Chemistry. United Kingdom. 2012. https://doi.org/10.1039/9781849733007

107. Sharma, D., Nagpal, A., Pakade, Y.B., Katnoria, J.K. (2010). Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: A review. Talanta, 82(4), 1077–1089. https://doi.org/10.1016/j.talanta.2010.06.043

108. Kingery, A.F., Allen, H.E. (1995). The environmental fate of organophosphorus nerve agents: A review. Toxicological and Environmental Chemistry, 47(3–4), 155–184. https://doi.org/10.1080/02772249509358137

109. Bajgar, J. (2004). Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Advances in Clinical Chemistry, 38(1), 151–216. https://doi.org/10.1016/s0065-2423(04)38006-6

110. Noort, D., Benschop, H.P., Black, R.M. (2002). Biomonitoring of exposure to chemical warfare agents: A review. Toxicology and Applied Pharmacology, 184(2), 116–126. https://doi.org/10.1006/taap.2002.9449

111. Zhang, W., Asiri, A.M., Liu, D., Du, D., Lin, Y. (2014). Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends in Analytical Chemistry, 54, 1–10. https://doi.org/10.1016/j.trac.2013.10.007

112. Wang, J., Krause, R., Block, K., Musameh, M., Mulchandani, A., Schöning, M.J. (2003). Flow injection amperometric detection of OP nerve agents based on an organophosphorus–hydrolase biosensor detector. Biosensors and Bioelectronics, 18(2–3), 255–260. https://doi.org/10.1016/s0956-5663(02)00178-1

113. Mishra, R.K., Hubble, L.J., Martín, A., Kumar, R., Barfidokht, A., Kim, J. et al. (2017). Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sensors, 2(4), 553–561. https://doi.org/10.1021/acssensors.7b00051

114. Chen, A., Shah, B. (2013). Electrochemical sensing and biosensing based on square wave voltammetry. Analytical Methods, 5(9), 2158–2173. https://doi.org/10.1039/C3AY40155C

115. Gupta, V.K., Jain, R., Radhapyari, K., Jadon, N., Agarwal, S. (2011). Voltammetric techniques for the assay of pharmaceuticals — A review. Analytical Biochemistry, 408(2), 179–196. https://doi.org/10.1016/j.ab.2010.09.027

116. Laborda, E., Molina, A., Martínez-Ortiz, F., Compton, R.G. (2012). Electrode modification using porous layers. Maximising the analytical response by choosing the most suitable voltammetry: Differential Pulse vs Square Wave vs Linear sweep voltammetry. Electrochimica Acta, 73, 3–9. https://doi.org/10.1016/j.electacta.2011.07.107

117. Uslu, B., Ozkan, S.A. (2011). Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Analytical Letters, 44(16), 2644–2702. https://doi.org/10.1080/00032719.2011.553010

118. Fallatah, A., Kuperus, N., Almomtan, M., Padalkar, S. (2022). Sensitive biosensor based on shape-controlled ZnO Nanostructures grown on flexible porous substrate for pesticide detection. Sensors, 22(9), Article 3522. https://doi.org/10.3390/s22093522

119. Vanegas, D.C., Patiño, L., Mendez, C., Oliveira, D.A.d., Torres, A.M., Gomes, C.L. et al. (2018). Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors, 8(2), Article 42. https://doi.org/10.3390/bios8020042

120. Taylor, S.L., Eitenmiller, R.R. (1986). Histamine food poisoning: Toxicology and clinical aspects. CRC Critical Reviews in Toxicology, 17(2), 91–128. https://doi.org/10.3109/10408448609023767

121. Bülbül, G., Hayat, A., Andreescu, S. (2015). Portable nanoparticle-based sensors for food safety assessment. Sensors, 15(12), 30736–30758. https://doi.org/10.3390/s151229826

122. Hanak, E., Boutrif, E., Fabre, P., Pineiro, M. (December 11–13, 2000). Food safety management in developing countries. Proceedings of the international workshop, CIRAD-FAO, Montpellier, France.

123. Bóka, B., Adányi, N., Virág, D., Sebela, M., Kiss, A. (2012). Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis, 24(1), 181–186. https://doi.org/10.1002/elan.201100419

124. Hu, L., Chee, P.L., Sugiarto, S., Yu, Y., Shi, Ch., Yan, R. et al. (2022). Hydrogel-based flexible electronics. Advanced Materials, 35(14), Article 2205326. https://doi.org/10.1002/adma.202205326

125. Guo, J., Yu, Y., Cai, L., Wang, Y., Shi, K., Shang, L. et al. (2021). Microfluidics for flexible electronics. Materials Today, 44, 105–135. https://doi.org/10.1016/j.attod.2020.08.017

126. Bao, Z., Chen, X. (2016). Flexible and Stretchable Devices. Advanced Materials, 28(22), 4177–4179. https://doi.org/10.1002/adma.201601422

127. Crabb, R.L., Treble, F.C. (1967). Thin silicon solar cells for large flexible arrays. Nature, 213, 1223–1224. https://doi.org/10.1038/2131223a0

128. Sun, X., Qin, Z., Ye, L., Zhang, H., Yu, Q., Wu, X. et al. (2020). Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chemical Engineering Journal, 382, Article 122832. https://doi.org/10.1016/j.cej.2019.122832

129. Qin, Z., Sun, X., Yu, Q., Zhang, H., Wu, X., Yao, M. et al. (2020). Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Applied Materials and Interfaces, 12(4), 4944–4953. https://doi.org/10.1021/acsami.9b21659

130. Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wu, D. et al. (2012). Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2(1), Article 870. https://doi.org/10.1038/srep00870

131. Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y. et al. (2014). Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Advanced Materials, 26(13), 2022–2027. https://doi.org/10.1002/adma.201304742

132. Tabish, M., Malik, M.U., Khan, M.A., Yasin, G., Asif, H.M., Anjum, M.J. et al. (2021). Construction of NiCo/graphene nanocomposite coating with bulgeslike morphology for enhanced mechanical properties and corrosion resistance performance. Journal of Alloys and Compounds, 867, Article 159138. https://doi.org/10.1016/j.jallcom.2021.159138

133. Nadeem, M., Yasin, G., Arif, M., Tabassum, H., Bhatti, M.H., Mehmood, M. et al. (2021). Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chemical Engineering Journal, 409, Article 128205. https://doi.org/10.1016/j.cej.2020.128205

134. Yasin, G., Arif, M., Mehtab, T., Shakeel, M., Mushtaq, M.A., Kumar, A. et al. (2020). A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers, 7(2), 402–410. https://doi.org/10.1039/C9QI01105F

135. Ibraheem, S., Chen, S., Peng, L., Li, J., Li, L., Liao, Q. et al. (2020). Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Applied Catalysis B: Environmental, 265, Article 118569. https://doi.org/10.1016/j.apcatb.2019.118569

136. Nadeem, M., Yasin, G., Arif, M, Bhatti, M.H, Sayin, K., Mehmood, M. et al. (2020). Pt-Ni@PC900 hybrid derived from layered-structure Cd-MOF for fuel cell ORR activity. ACS Omega, 5(5), 2123–2132. https://doi.org/10.1021/acsomega.9b02741

137. Hangarter, C.M., Chartuprayoon, N., Hernández, S.C., Choa, Y., Myung, N.V. (2013). Hybridized conducting polymer chemiresistive nano-sensors. Nanotoday, 8(1), 39–55. https://doi.org/10.1016/j.nantod.2012.12.005

138. Miller, D.R., Akbar, S.A., Morris, P.A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 204, 250–272. https://doi.org/10.1016/j.snb.2014.07.074

139. Giaretta, J.E., Duan, H., Farajikhah, S., Oveissi, F., Dehghani, F., Naficy, S. (2022). A highly flexible, physically stable, and selective hydrogel-based hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 371, Article 132483. https://doi.org/10.1016/j.snb.2022.132483

140. Escobedo, P., Bhattacharjee, M., Nikbakhtnasrabadi, F., Dahiya, R. (2021). Flexible strain and temperature sensing NFC tag for smart food packaging applications. IEEE Sensors Journal, 21(23), 26406–26414. https://doi.org/10.1109/JSEN.2021.3100876

141. Shrivastava, C., Berry, T., Cronje, P., Schudel, S., Defraeye, T. (2022). Digital twins enable the quantification of the trade-offs in maintaining citrus quality and marketability in the refrigerated supply chain. Nature Food, 3(6), 413–427. https://doi.org/10.1038/s43016-022-00497-9

142. Zhou, Y., Wan, C., Yang, Y., Yang, H., Wang, S., Dai, Z. et al. (2018). Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Advanced Functional Materials, 29(1), Article 1806220. https://doi.org/10.1002/adfm.201806220

143. Gupta, S., Navaraj, W.T., Lorenzelli, L., Dahiya, R. (2018). Ultra-thin chips for high-performance flexible electronics. npj Flexible Electronics, 2(1), Article 8. https://doi.org/10.1038/s41528-018-0021-5

144. Harendt, C., Kostelnik, J., Kugler, A., Lorenz, E., Saller, S., Schreivogel, A. et al. (2015). Hybrid Systems in Foil (HySiF) exploiting ultra-thin flexible chips. Solid-State Electronics, 113, 101–108. https://doi.org/10.1016/j.sse.2015.05.023

145. Biggs, J., Myers, J., Kufel, J., Ozer, E., Craske, S., Sou, A. et al. (2021). A natively flexible 32-bit Arm microprocessor. Nature, 595(7868), 532–536. https://doi.org/10.1038/s41586-021-3625-w


Review

For citations:


Luo D., Nikitina M.A., Xiao X. lexible sensors for food monitoring. Part II: Applications. Food systems. 2024;7(1):4-14. https://doi.org/10.21323/2618-9771-2024-7-1-4-14

Views: 856


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)