Preview

Food systems

Advanced search

Influence of pH on protein extraction from Sus scrofa pancreas

https://doi.org/10.21323/2618-9771-2023-6-4-539-546

Abstract

The porcine pancreas contains various enzymes, structural, regulatory, secretory, receptor and other biologically active substances that ensure both the functioning of the organ and its biological role in the organism. The aim of this work was to study the influence of pH changes in 0.9% sodium chloride solution used as an extractant on the efficiency of bioactive protein isolation from the porcine pancreas. The extraction was carried out with the 0.9% NaCl, 0.9% NaCl pH=4 and 0.9% NaCl pH= 8.5 with a stirring speed of 400 rpm for 150 min at 4 ºC; the ratio of pancreas: extractant was 1:5, the supernatant was separated by centrifugation. The protein concentration was measured by a biuret reaction on a semi-automatic biochemical analyzer Biochem SA. The proteomic composition of extracts and native pancreas was evaluated by 10% SDS-PAGE according to Laemmli method in the “VE10” chamber. Digital images of electrophoregrams were obtained using a Bio-5000 Plus scanner, edited in a graphic editor and analyzed using ImageJ software. When determining the intensity of protein fractions, it was noted that the use of 0.9% NaCl contributed to a greater yield of proteins with molecular weights of 200 kDa, 150 kDa, 69 kDa, 52 kDa and 33 kDa into the extractant; a pH shift to the acidic area stimulated the yield of fractions with molecular weights of 130 kDa, 50 kDa, 49 kDa, 45 kDa, 40 kDa, 30 kDa and 27kDa, and a pH shift to the alkaline area — only 47 kDa and 42 kDa. Most pancreas proteolytic enzymes have a molecular weight in a range of 34–23kDa, excepting the immature form of carboxypeptidases with MW 45–47kDa. The greatest intensity of protein bands was observed in the region with MW less than 33kDa on the obtained electrophoregrams. The presence of intense protein fractions in the region of molecular weights of less than 50–52kDa and 40kDa was also noted, which may correspond to enzymes such as pancreatic lipase and phospholipase A2, and the presence of protein fractions with MW above 130 kDa corresponding to various types and isoforms of collagen and laminin. In addition, such processes as protein aggregation and proteolysis can also influence the molecular weight distribution of protein fractions.

About the Authors

E. K. Polishchuk
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Ekaterina K. Polishchuk, Junior Researcher, Experimental Clinic — Research Laboratory of Biologically Active Substances of an Animal Origin

26, Talalikhina str., 109316, Moscow, Tel.: +7–495–676–95–11 (129)



M. A. Aryzina
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Marina A. Aryzina, Senior Laboratory Assistant, Experimental Clinic-Laboratory of Biologically Active  Substances of Animal Origin

26, Talalikhina str., 109316, Moscow, Tel.: +7–495–676–95–11 (128)



M. E. Spirina
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Maria E. Spirina, Senior Laboratory Assistant, Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin

26, Talalikhina str., 109316, Moscow, Tel.: +7–495–676–95–11 (207)



E. A. Kotenkova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Elena A. Kotenkova, Candidate of Technical Sciences, Senior Researcher, Experimental Clinic — Research  Laboratory of Biologically Active Substances of an Animal Origin

26, Talalikhina str., 109316, Moscow, Tel.: +7–495–676–95–11 (129)



References

1. A-Kader, H. H., Ghishan, F. K. (2012). The Pancreas. Chapter in a book: Textbook of Clinical Pediatrics: Springer Berlin Heidelberg. 2012. https://doi.org/10.1007/978-3-642-02202-9_198

2. Mastracci, T. L., Sussel, L. (2012). The endocrine pancreas: Insights into development, differentiation, and diabetes. Wiley Interdisciplinary Reviews: Developmental Biology, 1(5), 609–628. https://doi.org/10.1002/wdev.44

3. Pandiri, A. R. (2014). Overview of exocrine pancreatic pathobiology. Toxicologic Pathology, 42(1), 207–216. https://doi.org/10.1177/0192623313509907

4. Karpińska, M., Czauderna, M. (2022). Pancreas — Its Functions, Disorders, and Physiological Impact on the Mammals’ Organism. Frontiers in Physiology, 13, Article 807632. https://doi.org/10.3389/fphys.2022.807632

5. Chen, X. (2021). Protein Composition and Biogenesis of the Pancreatic Zymogen Granules. Pancreapedia: Exocrine Pancreas Knowledge Base. Retrieved from https://www.pancreapedia.org/reviews/protein-composition-and-biogenesis-of-pancreatic-zymogen-granules. Accessed August 20, 2023.

6. Ladisch, M. R., Kohlmann, K. L. (1992). Recombinant human insulin. Biotechnology Progress, 8(6), 469–478. https://doi.org/10.1021/bp00018a001

7. Vasilevskaya E. R., Aryuzina M. A., Vetrova E. S. (2021). Saline extraction as a method of obtaining a mixture of biologically active compounds of protein nature from a porcine pancreas. Food Systems, 4(2), 97–105. https://doi.org/10.21323/2618-9771-2020-4-2-97-105 (In Russian)

8. Siew, Y. Y., Zhang, W. (2021). Downstream processing of recombinant human insulin and its analogues production from E. coli inclusion bodies. Bioresources and Bioprocessing, 8(1), Article 65. https://doi.org/10.1186/s40643-021-00419-w

9. Ahn, J. Y., Kim, I. Y., Oh, S. J., Hwang, H. S., Yi, S. S., Kim, Y. N. et al. (2014). Proteomic analysis of domestic pig pancreas during development using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Laboratory Animal Research, 30(2), 45–53. https://doi.org/10.5625/lar.2014.30.2.45

10. Lambré, C., Barat Baviera, J.M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M. et al. (2021). Safety evaluation of food enzyme trypsin from porcine pancreas. EFSA Journal, 19(6), Article e06637. https://doi.org/10.2903/j.efsa.2021.6637

11. Silano, V., Barat Baviera, J.M., Bolognesi, C., Cocconcelli, P.S., Crebelli, R., Gott, D.M. et al. (2021). Safety evaluation of a food enzyme containing trypsin and chymotrypsin from porcine pancreas. EFSA Journal, 19(1), Article e06369. https://doi.org/10.2903/j.efsa.2021.6369

12. Silano, V., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M. et al. (2021). Safety evaluation of a food enzyme containing trypsin, chymotrypsin, elastase and carboxypeptidase from porcine pancreas. EFSA Journal, 19(1), Article e06368. https://doi.org/10.2903/j.efsa.2021.6368

13. Hu, M., Bi, H., Moffat, D., Blystone, M., DeCostanza, L., Alayi, T. et al. (2021). Proteomic and bioinformatic analysis of decellularized pancreatic extracellular matrices. Molecules, 26(21), Article 6740. https://doi.org/10.3390/molecules26216740

14. Kotenkova, E. A., Polishchuk, E. K. (2022). Technological approaches to the extraction and purification by ultrafiltration techniques of target protein molecules from animal tissues: a review. Theory and Practice of Meat Processing, 7(2), 76–82. https://doi.org/10.21323/2414-438X-2022-7-2-76-82

15. Yasothai, R., Giriprasad, R. (2015). Acid/Alkaline Solublization method of processing protein. International Journal of Science, Environment and Technology, 4(1), 96–100.

16. Hani, F. M., Cole, A. E., Altman, E. (2019). The ability of salts to stabilize proteins in vivo or intracellularly correlates with the Hofmeister series of ions. International Journal of Biochemistry and Molecular Biology, 10(3), 23–31.

17. Lebendiker, M., Danieli, T. (2014). Production of prone-to-aggregate proteins. FEBS Letters, 588(2), 236–246. https://doi.org/10.1016/j.febslet.2013.10.044

18. Blum, H., Beier, H., Gross, H. J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8(2), 93–99. https://doi.org/10.1002/elps.1150080203

19. P00761 · TRYP_PIG (Trypsin). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/P00761/entry#function. Accessed August 21, 2023.

20. A0A4X1V2S2 · A0A4X1V2S2_PIG (Trypsinogen). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A4X1V2S2/entry. Accessed August 21, 2023.

21. Zamani, A., Rezai, M., Madani, R. (2013). A comparative study on some kinetic and biochemical properties of trypsin enzyme from Common Kilka (Clupeonella cultriventris caspia) and Porcine. Journal of Fisheries, 66(2), 145–158.

22. Deng, Y., Gruppen, H., Wierenga, P. A. (2018). Comparison of protein hydrolysis catalyzed by bovine, porcine, and human trypsins. Journal of Agricultural and Food Chemistry, 66(16), 4219–4232. https://doi.org/10.1021/acs.jafc.8b00679

23. G1ARD6 · G1ARD6_PIG (Chymotrypsin C). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/G1ARD6/entry. Accessed August 21, 2023.

24. A0A480M2A7 · A0A480M2A7_PIG (Chymotrypsinogen B2). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A480M2A7/entry. Accessed August 21, 2023.

25. A0A480INX1 · A0A480INX1_PIG (Chymotrypsinogen B2). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A480INX1/entry. Accessed August 21, 2023.

26. Johnson, K. D., Marshall, S., Clark, A. (2005). A functional comparison of ovine and porcine chymotrypsins. New Zealand Journal of Agricultural Research, 48(3), 311–319. https://doi.org/10.1080/00288233.2005.9513661

27. Hudáky, P., Kaslik, G., Venekei, I., Gráf, L. (1999). The differential specificity of chymotrypsin A and B is determined by amino acid 226. European Journal of Biochemistry, 259(1–2), 528–533. https://doi.org/10.1046/j.1432-1327.1999.00075.x

28. Gorshkov, A. V., Evreinov, V. V., Pridatchenko, M. L., Perlova, T. Y., Tarasova, I. A., Gorshkov, M. V. (2016). Applicability of the critical chromatography concept to proteomics problems: I. Effect of the stationary phase and the size of the chromatographic column on the dependence of the retention time of peptides and proteins on the amino acid sequence, Journal of Analytical Chemistry, 71(1), 110–125. https://doi.org/10.7868/S0044450216010059 (In Russian)

29. P09954 · CBPA1_PIG (Carboxypeptidase A1). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/P09954/entry. Accessed August 21, 2023.

30. P09955 · CBPB1_PIG (Carboxypeptidase B). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/P09955/entry. Accessed August 21, 2023.

31. Koide, A., Yoshizawa, M., Kurachi, K. (1981). Crystallization and properties of Carboxypeptidase A γ from porcine pancreas. European Journal of Biochemistry, 117(2), 383–388. https://doi.org/10.1111/j.1432-1033.1981.tb06349.x

32. Südi, P., Dala, E., Szajáni, B. (1989). Preparation, characterization, and application of a novel immobilized carboxypeptidase B. Applied Biochemistry and Biotechnology, 22(1), 31–43. https://doi.org/10.1007/BF02922695

33. Carboxypeptidase B from porcine pancreas. MERCK. Retrieved from https://www.sigmaaldrich.com/RU/en/product/sigma/c9584. Accessed August 21, 2023.

34. P00772 · CELA1_PIG (Chymotrypsin-like elastase family member 1). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/P00772/entry. Accessed August 21, 2023.

35. Ardelt, W. (1974). Partial purification and properties of porcine pancreatic elastase II. Biochimica et Biophysica Acta (BBA) — Enzymology, 341(2), 318–326. https://doi.org/10.1016/0005-2744(74)90224-1

36. Sundberg, L., Kristiansen, T. (1972). Chemical fixation of elastase to agarose. FEBS Letters, 22(2), 175–177. https://doi.org/10.1016/0014-5793(72)80037-1

37. Elastase, Porcine Pancreas, High Purity, Crystallized. MERCK. Retrieved from https://www.sigmaaldrich.com/RU/en/product/mm/324682. Accessed August 21, 2023.

38. Polishchuk, E. K., Kotenkova, E. A., Kovalev, L. I. (2013). Methodological approaches to the extraction of substances with antimicrobial action from animal raw materials. Vsyo o Myase, 3, 70–76. https://doi.org/10.21323/2071-2499-2023-3-70-76 (In Russian)

39. Kotenkova, E., Lukinova, E., Kovalyov, L. (2018). Bovine mucous membranes as a source of antimicrobial compounds. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 667–672. https://doi.org/10.5219/976

40. Szczesna, K. (2019). Why Does the Molecular Weight of My Protein Differ from the Theoretically Expected Weight? Technology Networks — Proteomics and Metabolomics. Retrieved from https://www.technologynetworks.com/proteomics/articles/why-does-the-molecular-weight-of-my-protein-differ-fromthe-theoretically-expected-weight-322079. Accessed August 21, 2023.

41. van den Berg, B., Tessari, M., Boelens, R., Dijkman, R., Kaptein, R., de Haas, G. H. et al. (1995). Solution structure of porcine pancreatic phospholipase A2 complexed with micelles and a competitive inhibitor. Journal of Biomolecular NMR, 5(2), 110–121. https://doi.org/10.1007/BF00208802

42. P19619 · ANXA1_PIG (Annexin A1). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/P19619/entry#sequences. Accessed August 21, 2023.

43. Gonçalves, G. R. F., Gandolfi, O. R. R., Brito, M. J. P., Bonomo, R. C. F., da Costa Ilhéu Fontan, R., Veloso, C. M. (2021). Immobilization of porcine pancreatic lipase on activated carbon by adsorption and covalent bonding and its application in the synthesis of butyl butyrate. Process Biochemistry, 111(2), 114–123. https://doi.org/10.1016/j.procbio.2021.10.027

44. Sun, L., Qin, T., Liu, Y., Zhao, H., Xia, X., Lei, X. (2018). Cloning, expression, and characterization of a porcine pancreatic α-amylase in Pichia pastoris. Animal Nutrition, 4(2), 234–240. https://doi.org/10.1016/j.aninu.2017.11.004

45. Morisset, J., Wong, H., Walsh, J. H., Lainé, J., Bourassa, J. (2000). Pancreatic CCKB receptors: Their potential roles in somatostatin release and δ-cell proliferation. American Journal of Physiology­Gastrointestinal and Liver Physiology, 279(1), G148–G156. https://doi.org/10.1152/ajpgi.2000.279.1.G148

46. D7EZN2 · LIPR2_PIG (Pancreatic lipase-related protein 2). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/D7EZN2/entry#sequences. Accessed August 21, 2023.

47. P00591 · LIPP_PIG (Pancreatic triacylglycerol lipase). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/P00591/entry#sequences. Accessed August 21, 2023.

48. A0A287AWV5 · A0A287AWV5_PIG (Laminin subunit beta-2). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A287AWV5/entry#sequences. Accessed August 21, 2023.

49. F1RZM4 · F1RZM4_PIG (Laminin subunit alpha 4). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/F1RZM4/entry#sequences. Accessed August 21, 2023.

50. Vigier, S., Gagnon, H., Bourgade, K., Klarskov, K., Fülöp, T., Vermette, P. (2017). Composition and organization of the pancreatic extracellular matrix by combined methods of immunohistochemistry, proteomics and scanning electron microscopy. Current Research in Translational Medicine, 65(1), 31–39. https://doi.org/10.1016/j.retram.2016.10.001

51. Hilling, D., Rijkelijkhuizen, J. K. R. A., Töns, H. A. M., Terpstra, O. T., Bouwman, E. (2009). Amount and Distribution of Collagen in the Pancreas Have No Effect on Porcine Islet Isolation Outcome. Transplantation Proceedings, 41(1), 326–327. https://doi.org/10.1016/j.transproceed.2008.10.065

52. Sackett, S. D., Tremmel, D. M., Ma, F., Feeney, A. K., Maguire, R. M., Brown, M. E. et al. (2018). Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Scientific Reports, 8(1), Article 10452. https://doi.org/10.1038/s41598-018-28857-1

53. Meyer, T., Czub, S., Chodnewska, I., Beutner, U., Hamelmann, W., Klöck, G. et al. (1997). Expression pattern of extracellular matrix proteins in the pancreas of various domestic pig breeds, the Goettingen Minipig and the Wild Boar. Annals of Transplantation, 2(3), 17–26.

54. A0A287A1S6 · A0A287A1S6_PIG (Collagen alpha-1(I) chain preproprotein). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A287A1S6/entry#sequences. Accessed August 21, 2023.

55. A0A8D0ILD8 · A0A8D0ILD8_PIG (Collagen type III alpha 1 chain). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A8D0ILD8/entry#sequences.Accessed August 21, 2023.

56. F1SNP0 · F1SNP0_PIG (Collagen type IV alpha 3 chain). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/F1SNP0/entry. Accessed August 21, 2023.

57. A0A8D0IML7 · A0A8D0IML7_PIG (Collagen type IV alpha 5 chain). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A8D0IML7/entry. Accessed August 21, 2023.

58. A0A286ZXV9 · A0A286ZXV9_PIG (Collagen type IV alpha 4 chain). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A286ZXV9/entry. Accessed August 21, 2023.

59. F1S021 · F1S021_PIG (Collagen type V alpha 1 chain). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/F1S021/entry. Accessed August 21, 2023.

60. A0A8D0XNT6 · A0A8D0XNT6_PIG (Collagen type V alpha 2 chain). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A8D0XNT6/entry. Accessed August 21, 2023.

61. F1S3G7 · F1S3G7_PIG (Collagen type V alpha 3 chain). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/F1S3G7/entry. Accessed August 21, 2023.

62. A0A8D0XY85 · A0A8D0XY85_PIG (Collagen type VI alpha 3 chain). UniProt. Retrieved from https://www.uniprot.org/uniprotkb/A0A8D0XY85/entry. Accessed August 21, 2023.

63. Fedulova, L., Vasilevskaya, E., Tikhonova, O., Kazieva, L., Tolmacheva, G., Makarenko, A. (2022). Proteomic markers in the muscles and brain of pigs recovered from hemorrhagic stroke. Genes, 13(12), Article 2204. https://doi.org/10.3390/genes13122204

64. Zgoda, V. G., Moshkovskii, S. A., Ponomarenko, E. A., Andreewski, T. V., Kopylov, A. T., Tikhonova, O. V. et al. (2009). Proteomics of mouse liver microsomes: Performance of different protein separation workflows for LC–MS/MS. Proteomics, 9(16), 4102–4105. https://doi.org/10.1002/pmic.200900050

65. Chernukha, I. M., Fedulova, L. V., Kotenkova, E. A., Shishkin, S. S., Kovalyov, L. I. (2016). The influence of autolysis on the protein-peptide profile of Bos taurus and Sus scrofa heart and aorta tissues. Theory and Practice of Meat Processing, 1(2), 4–9. https://doi.org/10.21323/2414-438X-2016-1-2-4-9 (In Russian)

66. Shimizu, M., Hayashi, T., Saitoh, Y., Ohta, K., Itoh, H. (1990). Postmortem Autolysis in the Pancreas: Multivariate statistical study. The influence of clinicopathological conditions. Pancreas, 5(1), 91–94. https://doi.org/10.1097/00006676-199001000‑00013

67. Siriwardana, R. C., Deen, K. I., Hevawesenthi, J. (2010). Postmortem sampling of the pancreas for histological examination: What is the optimum cut-off time? JOP: Journal of the Pancreas, 11(1), 87–88.

68. Granlund, L., Hedin, A., Wahlhütter, M., Seiron, P., Korsgren, O., Skog, O. et al. (2021). Histological and transcriptional characterization of the pancreatic acinar tissue in type 1 diabetes. BMJ Open Diabetes Research and Care, 9(1), Article e002076. https://doi.org/10.1136/bmjdrc-2020-002076

69. Gill, J. R. (2016). Pancreatitis: A Forensic Perspective. Academic Forensic Pathology, 6(2), 237–248. https://doi.org/10.23907/2016.025


Review

For citations:


Polishchuk E.K., Aryzina M.A., Spirina M.E., Kotenkova E.A. Influence of pH on protein extraction from Sus scrofa pancreas. Food systems. 2023;6(4):539-546. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-4-539-546

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)