Bioinformatics study of selective inhibitor from Garcinia mangostana L. tackle HIV‑1 infection
https://doi.org/10.21323/2618-9771-2023-6-4-471-476
Abstract
HIV has a host cell, T‑cell lymphocytes with CD4+ receptors. HIV drugs have the inhibitory activity on HIV‑1 protease by producing chemical bonding interactions such as hydrogen and hydrophobic. However, some cases show long-term side effects that may be harmful from the use of synthetic antiretrovirals. This requires new innovations to make drugs based on natural resources or alternative medicine for handling these cases. Natural-based drugs are claimed to reduce the side effects produced. Garcinia mangostana L. or queen of fruit is widely found in Southeast Asia. Many parts of this plant, such as fruits, are used for traditional medicine. Research with in vitro and in vivo approaches reveals that mangostin compounds from Garcinia mangostana L. can be an antiviral candidate. Garcinia mangostana L. has the main chemical compounds of garciniaxanthone, garcinone A, and mangostin. This study uses garciniaxanthone, garcinone A, and mangostin compounds to reveal the molecular mechanism of the antiviral activity in Garcinia mangostana L. through inhibition of HIV‑1 protease with a bioinformatics approach. In silico methods used in this study are druglikeness, molecular docking, interactions, visualization, and dynamic simulation. Garciniaxanthon B, garcinone B, and beta-mangostin from Garcinia mangostana L. have potential as antiretroviral agents for the treatment of HIV‑1 infection. The three compounds are predicted to inhibit the protease activity in HIV‑1 with a more negative binding affinity score, form ligand-protein molecular complexes with van der Waals, hydrogen, pi/alkyl/anion/ sigma bonds, form stable bonds and drug-like molecules.
About the Authors
V. D. KharismaIndonesia
Viol D. Kharisma, Master of Science, PhD Student, Department of Biology, Faculty of Science and Technology, Universitas Airlangga Jl. Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, 60115, Tel.: +628–121–78–70–02
A. N.M. Ansori
Indonesia
Arif N. M. Ansori, PhD in Veterinary Science, Researcher, Postgraduate School, Universitas Airlangga Jl. Airlangga 4–6, Surabaya, East Java, 60286, Tel.: +628–214–464–78–32
V. Jakhmola
India
Vikash Jakhmola, Professor, Professor, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University Chakrata Rd, Prem Nagar, Dehradun, Uttarakhand, 248007, Tel.: +918–126–00–96–20
E. Ullah
United States
Emdad Ullah, Master of Science, PhD Student, Department of Chemistry
310 President Cir, Mississippi, Mississippi State, United States MS39762 Tel.: +1–662–617–56–70
H. Purnobasuki
Indonesia
Hery Purnobasuki, Professor, Department of Biology, Faculty of Science and Technology
Jl. Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, 60115, Indonesia Tel.: +6–231–592–68–04
References
1. Arnawati, I. A., Sudiana, I. K. (2022). Formation of woven bone in orthodontic tooth movement tension areas after giving Mangostin by expression of Runx-2 and IL-10. Bali Medical Journal, 11(3), 1956–1962. https://doi.org/10.15562/bmj.v11i3.3971
2. Pramana, T. Y., Wasita, B., Widyaningsih, V., Cilmiaty, R., Suroto, S., Mudigdo, A. et al. (2021). The ethanol extract of Garcinia mangostana L peel reduces the isoniazid-induced liver damage in rats. Bali Medical Journal, 10(1), 156–159. https://doi.org/10.15562/bmj.v10i1.2108
3. Indharty, R. S., Japardi, I., Siahaan, A. M., Tandean, S. (2019). Mangosteen extract reduce apoptosis via inhibition of oxidative process in rat model of traumatic brain injury. Bali Medical Journal, 8(1), 227–232. https://doi.org/10.15562/bmj.v8i1.1153
4. Handayani, Wulandari, D. D., Wulansari, D. D. (2022). Phytochemical screening, antioxidant activity and cytotoxicity assay from noni juice and fermented noni (Morinda citrifolia L.). Bali Medical Journal, 11(3), 1168–1171. https://doi.org/10.15562/bmj.v11i3.3534
5. Patil, P., Agrawal, M., Almelkar, S., Jeengar, M. K., More, A., Alagarasu, K. et al. (2021). In vitro and in vivo studies reveal α-Mangostin, a xanthonoid from Garcinia mangostana, as a promising natural antiviral compound against chikungunya virus. Virology Journal, 18(1), Article 47. https://doi.org/10.1186/s12985-021-01517-z
6. Sharp, P. M., Hahn, B. H. (2011). Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspectives in Medicine, 1(1), Article a006841. https://doi.org/10.1101/cshperspect.a006841
7. de Cock, K. M., Jaffe, H. W., Curran, J. W. (2011). Reflections on 30 years of AIDS. Emerging Infectious Diseases, 17(6), 1044–1048. https://doi.org/10.3201/eid/1706.100184
8. Rhame, F. S., Rawlins, S. L., Petruschke, R. A., Erb, T. A., Winchell, G. A., Wilson, H. M. et al. (2004). Pharmacokinetics of indinavir and ritonavir administered at 667 and 100 milligrams, respectively, every 12 hours compared with indinavir administered at 800 milligrams every 8 hours in human immunodeficiency virus-infected patients. Antimicrobial Agents and Chemotherapy, 48(11), 4200–4208. https://doi.org/10.1128/AAC.48.11.4200-4208.2004
9. Prianggandanni, M. A. V., Lestari, A. A. W., Wande, I. N., Mahartini, N. N., Herawati, S. (2023). Correlation between T-lymphocyte CD4+ and total lymphocyte count (TLC), hemoglobin, neutrophil to lymphocyte ratio (NLR) and T-lymphocyte CD4+/CD8+ ratio in HIV patients at Prof. Dr. I.G.N.G Ngoerah Hospital, Denpasar, Bali, Indonesia. Bali Medical Journal, 12(2), 2017–2021. https://doi.org/10.15562/bmj.v12i2.4342
10. Hadiatma, F. N., Triyono, E. A. (2023). A naive human immunodeficiency virus (HIV) patient with extrapulmonary tuberculosis manifestation: Diagnosis and management challenges. Bali Medical Journal, 12(1), 319–323. https://doi.org/10.15562/bmj.v12i1.4061
11. Iwase, S. C., Miyazato, P., Katsuya, H., Islam, S., Yang, B. T. J., Ito, J. et al. (2019). HIV-1 DNA-capture-seq is a useful tool for the comprehensive characterization of HIV-1 provirus. Scientific Reports, 9(1), Article 12326. https://doi.org/10.1038/s41598-019-48681-5
12. Satou, Y., Katsuya, H., Fukuda, A., Misawa, N., Ito, J., Uchiyama, Y. et al. (2018). Dynamics and mechanisms of clonal expansion of HIV-1-infected cells in a humanized mouse model. Scientific Reports, 8(1), Article 6770. https://doi.org/10.1038/s41598-018-24607-5
13. Aso, H., Nagaoka, S., Kawakami, E., Ito, J., Islam, S., Tan, B. J. Y. et al. (2020). Multiomics investigation revealing the characteristics of HIV-1-infected cells in vivo. Cell Reports, 32(2), Article 107887. https://doi.org/10.1016/j.celrep.2020.107887
14. Badaya, A., Sasidhar, Y. U. (2020). Inhibition of the activity of HIV-1 protease through antibody binding and mutations probed by molecular dynamics simulations. Scientific Reports, 10(1), Article 5501. https://doi.org/10.1038/s41598-020-62423-y
15. Matsuda, K., Islam, S., Takada, T., Tsuchiya, K., Yang Tan, B. J., Hattori, S.-I. et al. (2021). A widely distributed HIV-1 provirus elimination assay to evaluate latency-reversing agents in vitro. Cell Reports Methods, 1(8), Article 100122. https://doi.org/10.1016/j.crmeth.2021.100122
16. Kim, S. (2021). Exploring chemical information in PubChem. Current Protocols, 1(8), Article e217. https://doi.org/10.1002/cpz1.217
17. Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H. et al. (2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038
18. Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, Article 42717. https://doi.org/10.1038/srep42717
19. Ononamadu, C. J., Ibrahim, A. (2021). Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. Biotechnologia, 102(1), 85–99. https://doi.org/10.5114/bta.2021.103765
20. Yadav, R., Imran, M., Dhamija, P., Chaurasia, D. K., Handu, S. (2021). Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 39(17), 6617–6632. https://doi.org/10.1080/07391102.2020.1796812
21. Mithilesh, S., Raghunandan, D., Suresh, P. K. (2022). In-silico identification of natural compounds from traditional medicine as potential drug leads against SARS-CoV-2 through virtual screening. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 92(1), 81–87. https://doi.org/10.1007/s40011-021-01292-5
22. Khan, S., Nasrullah, Hussain, A., Asif, M., Sattar, F. A., Audhal, F. A. et al. (2023). Insilico studies of inhibitory compounds against protease enzymes of SARS-CoV-2. Medicine, 102(6), Article e31318. https://doi.org/10.1097/MD.0000000000031318
23. Rosignoli, S., Paiardini, A. (2022). Boosting the full potential of PyMOL with structural biology plugins. Biomolecules, 12(12), Article 1764. https://doi.org/10.3390/biom12121764
24. Choudhary, S., Kesavan, A. K., Juneja, V., Thakur, S. (2023). Molecular modeling, simulation and docking of Rv1250 protein from Mycobacterium tuberculosis. Frontiers in Bioinformatics, 3, Article 1125479. https://doi.org/10.3389/fbinf.2023.1125479
25. Khan, S. A., Wu, Y., Li, A. S.-M., Fu, X. -Q., Yu, Z. -L. (2022). Network pharmacology and molecular docking-based prediction of active compounds and mechanisms of action of Cnidii fructus in treating atopic dermatitis. BMC Complementary Medicine and Therapies, 22(1), Article 275. https://doi.org/10.1186/s12906-022-03734-7
26. Nada, H., Elkamhawy, A., Lee, K. (2022). Identification of 1H-purine-2,6-dione derivative as a potential SARS-CoV-2 main protease inhibitor: Molecular docking, dynamic simulations, and energy calculations. PeerJ, 10, Article e14120. https://doi.org/10.7717/peerj.14120
27. Gurung, A.B., Ali, M.A., Elshikh, M. S., Aref, I., Amina, M., Lee, J. (2022). An in silico approach unveils the potential of antiviral compounds in preclinical and clinical trials as SARS-CoV-2 omicron inhibitors. Saudi Journal of Biological Sciences, 29(6), Article 103297. https://doi.org/10.1016/j.sjbs.2022.103297
28. Terefe, E. M., Ghosh, A. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of phytochemicals isolated from Croton dichogamus against the HIV-1 reverse transcriptase. Bioinformatics and Biology Insights, 16, Article 11779322221125605. https://doi.org/10.1177/11779322221125605
29. Verkhivker, G. (2022). Conformational flexibility and local frustration in the functional states of the SARS-CoV-2 spike B.1.1.7 and B.1.351 variants: Mutation-induced allosteric modulation mechanism of functional dynamics and protein stability. International Journal of Molecular Sciences, 23(3), Article 1646. https://doi.org/10.3390/ijms23031646
30. Sumera, Anwer, F., Waseem, M., Fatima, A., Malik, N., Ali, A. et al. (2022). Molecular docking and molecular dynamics studies reveal secretory proteins as novel targets of temozolomide in glioblastoma multiforme. Molecules, 27(21), Article 7198. https://doi.org/10.3390/molecules27217198
31. Puławski, W., Koliński, A., Koliński, M. (2023). Integrative modeling of diverse protein-peptide systems using CABS-dock. PLoS Computational Biology, 19(7), Article e1011275. https://doi.org/10.1371/journal.pcbi.1011275
32. Umar, A.K., Zothantluanga, J. H., Luckanagul, J. A., Limpikirati, P., Sriwidodo, S. (2023). Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 Mpro inhibitor. PeerJ, 11, Article e14915. https://doi.org/10.7717/peerj.14915
33. Bi, C., Xu, H., Yu, J., Ding, Z., Liu, Z. (2023). Botanical characteristics, chemical components, biological activity, and potential applications of mangosteen. PeerJ, 11, Article e15329. https://doi.org/10.7717/peerj.15329
34. Zonouz, A.M., Rahbardar, M., G. Hosseinzadeh, H. (2023). Antidotal and protective effects of mangosteen (Garcinia mangostana) against natural and chemical toxicities: A review. Iranian Journal of Basic Medical Sciences, 26(5), 492–503. https://doi.org/10.22038/IJBMS.2023.66900.14674
35. Suksamran, N., Anantawat, V., Wattanaarsakit, P., Wei, C., Rahman, M. A., Majima, H. J. et al. (2022). Mangosteen vinegar from Garcinia mangostana: quality improvement and antioxidant properties. Heliyon, 8(12), Article e11943. https://doi.org/10.1016/j.heliyon.2022.e11943
36. Khan, I., Zaib, S. (2023). Designing next-generation drug-like molecules for medicinal applications. Molecules, 28(4), Article 1860. https://doi.org/10.3390/molecules28041860
37. Pearson, W. R. (2013). An introduction to sequence similarity (“homology”) searching. Current Protocols in Bioinformatics, Chapter 3, 3.1.1–3.1.8. https://doi.org/10.1002/0471250953.bi0301s42
38. Tiz, D.B., Bagnoli, L., Rosati, O., Marini, F., Santi, C., Sancineto, L. (2022). FDA-approved small molecules in 2022: Clinical uses and their synthesis. Pharmaceutics, 14(11), Article 2538. https://doi.org/10.3390/pharmaceutics14112538
39. McMillan, A. E., Wu, W. W. X., Nichols, P. L., Wanner, B. M., Bode, J. W. (2022). A vending machine for drug-like molecules — automated synthesis of virtual screening hits. Chemical Science, 13(48), 14292–14299. https://doi.org/10.1039/d2sc05182f
40. Tungary, E., Ongko, J., Sukweenadhi, J., Antonius, Y. (2022). Molecular docking of active compounds from traditional medicinal plants as ACE-2 protein (1R4L) inhibitor in searching for COVID-19 drug. Research Journal of Pharmacy and Technology, 15(9), 4235. https://doi.org/10.52711/0974-360X.2022.00712
41. Krihariyani, D., Haryanto, E., Sasongkowati, R. (2021). In silico analysis of antiviral activity and pharmacokinetic prediction of Brazilein Sappan Wood (Caesalpinia sappan L.) against SARS-CoV-2 spike glycoproteins. Indonesian Journal of Medical Laboratory Science and Technology, 3(1), 26–37. https://doi.org/10.33086/ijmlst.v3i1.1854.
42. Medina-Barandica, J., Contreras-Puentes, N., Tarón-Dunoyer, A., DuránLengua, M., Alviz-Amador, A. (2023). In-silico study for the identification of potential destabilizers between the spike protein of SARS-CoV-2 and human ACE-2. Informatics in Medicine Unlocked, 40, Article 101278. https://doi.org/10.1016/j.imu.2023.101278
43. Macalalad, M. A. B., Gonzales, A. A. (2023). In silico screening and identification of antidiabetic inhibitors sourced from phytochemicals of philippine plants against four protein targets of diabetes (PTP1B, DPP-4, SGLT-2, and FBPase). Molecules, 28(14), Article 5301. https://doi.org/10.3390/molecules28145301
44. Julaton, T., Taclendo, A., Oyong, G., Rempillo, O., Galvez, M. C., Vallar, E. (2022). In silico insights on the pro-inflammatory potential of polycyclic aromatic hydrocarbons and the prospective anti-inflammatory capacity of Andrographis paniculata phytocompounds. International Journal of Environmental Research and Public Health, 19(14), Article 8588. https://doi.org/10.3390/ijerph19148588
45. Nag, A., Dasgupta, A., Sengupta, S., Lai, T. K., Acharya, K. (2023). An in-silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus. Computers in Biology and Medicine, 152, Article 106433. https://doi.org/10.1016/j.compbiomed.2022.106433
46. Yang, S.-Q., Zhang, L.-X., Ge, Y.-J., Zhang, J.-W., Hu, J.-X., Shen, C.-Y. et al. (2023). In-silico target prediction by ensemble chemogenomic model based on multi-scale information of chemical structures and protein sequences. Journal of Cheminformatics, 15(1), Article 48. https://doi.org/10.1186/s13321-023-00720-0
47. Saraswat, J., Riaz, U., Patel, R. (2022). In-silico study for the screening and preparation of ionic liquid-AVDs conjugate to combat COVID-19 surge. Journal of Molecular Liquids, 359, Article 119277. https://doi.org/10.1016/j.molliq.2022.119277
48. Cabral, M. B., Cruz, C. J. D., Sato, Y., Oyong, G., Rempillo, O., Galvez, M. C. et al. (2022). In Silico approach in the evaluation of pro-inflammatory potential of polycyclic aromatic hydrocarbons and volatile organic compounds through binding affinity to the human toll-like receptor 4. International Journal of Environmental Research and Public Health, 19(14), Article 8360. https://doi.org/10.3390/ijerph19148360
49. Begum, M. N., Mahtarin, R., Ahmed, S., Shahriar, I., Hossain, S. R., Mia, M. W. et al. (2023). Investigation of the impact of nonsynonymous mutations on thyroid peroxidase dimer. PloS One, 18(9), Article e0291386. https://doi.org/10.1371/journal.pone.0291386
50. Naha, A., Banerjee, S., Debroy, R., Basu, S., Ashok, G., Priyamvada, P. et al. (2022). Network metrics, structural dynamics and density functional theory calculations identified a novel Ursodeoxycholic Acid derivative against therapeutic target Parkin for Parkinson’s disease. Computational and Structural Biotechnology Journal, 20, 4271–4287. https://doi.org/10.1016/j.csbj.2022.08.017
Review
For citations:
Kharisma V.D., Ansori A.N., Jakhmola V., Ullah E., Purnobasuki H. Bioinformatics study of selective inhibitor from Garcinia mangostana L. tackle HIV‑1 infection. Food systems. 2023;6(4):471-476. https://doi.org/10.21323/2618-9771-2023-6-4-471-476