Оценка эффективности экстракции вирусов из пищевых матриц и частоты встречаемости контаминированных продуктов в торговой сети
https://doi.org/10.21323/2618-9771-2023-6-4-463-470
Аннотация
Экспресс-обнаружение вирусов, в частности норовируса (NoV) и вируса гепатита А (HAV), становится важнейшей задачей контроля безопасности пищевых продуктов. В данном исследовании были рассмотрены различные подходы к извлечению вирусных частиц и способы выделения РНК из пищевых матриц с целью оценки эффективности экстракции менговируса. Эффективность экстракции менговируса из малины составила 14,26%, из устриц — 7,99%, из свиной печени — 8,33%. Была проведена оценка экстракции РНК различными методами. Наибольшая эффективность экстракции менговируса из свиной печени наблюдалась при выделении РНК с помощью полуавтоматической системы eGene up и составила 19,37%. Наименьшая эффективность экстракции была достигнута при выделении РНК ручным способом — 5,31%. При экстракции РНК из устриц максимальная эффективность обеспечивалась с помощью станции для выделения НК AutoPure и набора NucliSENS — 33,35%, а минимальная эффективность наблюдалась при использовании системы eGene up и составила 9,78%. Проведенный мониторинг пищевых продуктов показал, что наибольшая встречаемость норовируса GII была зафиксирована в образцах устриц и составила 9,6% от исследуемых образцов; на втором месте находилась клубника, где встречаемость норовируса GII составила 6,8%. В образцах малины норовирус GII обнаружен не был.
Об авторах
Ю. К. ЮшинаРоссия
Юшина Юлия Константиновна — доктор технических наук, руководитель лаборатории «Гигиена производства и микробиология»
109316, Москва, ул. Талалихина, 26 Тел.: +7–495–676–95–11 (доб. 402)
А. А. Семенова
Россия
Семенова Анастасия Артуровна — доктор технических наук, профессор, заместитель директора
109316, г. Москва, ул. Талалихина, 26 Тел.: +7–495–676–95–11 (доб. 105)
О. А. Кузнецова
Россия
Кузнецова Оксана Александровна — доктор технических наук, директор
109316, Москва, ул. Талалихина, 26 Тел.: +7–495–676–95–11 (доб.106)
Д. М. Сатабаева
Россия
Сатабаева Дагмара Мухмадовна — инженер исследователь, лаборатория «Гигиена производства и микробиология»
109316, Москва, ул. Талалихина, 26 Тел.: +7–495–676–95–11 (доб. 405)
Е. В. Зайко
Россия
Зайко Елена Викторовна — кандидат технических наук, младший научный сотрудник, лаборатория «Гигиена производства и микробиологи»
109316, Москва, ул. Талалихина, 26 Тел.: +7–495–676–95–11 (доб. 407)
Б. Велебит
Россия
Велебит Бранко — магистр медицинских наук, главный научный сотрудник, Руководитель отдела микробиологии и молекулярной биологии
11040, Сербия, Белград, ул. Kaćanskog, 13 Тел.: +381–11–2650–722
Список литературы
1. Bachofen, C. (2018). Selected viruses detected on and in our food. Current Clinical Microbiology Reports, 5, 143–153. https://doi.org/10.1007/s40588-018-0087-9
2. Predmore, A., Li, J. (2011). Enhanced removal of a human norovirus surrogate from fresh vegetables and fruits by a combination of surfactants and sanitizers. Applied and Environmental Microbiology, 77(14), 4829–4838. https://doi.org/10.1128/AEM.00174-11
3. King, T., Cole, M., Farber, J. M., Eisenbrand, G., Zabaras, D., Fox, E. M. et al. (2017). Food safety for food security: Relationship between global megatrends and developments in food safety. Trends in Food Science and Technology, 68, 160–175. https://doi.org/10.1016/j.tifs.2017.08.014
4. Widén, F., Vågsholm, I., Belák, S., Muradrasoli, S. (2011). Achievement V–Methods for breaking the transmission of pathogens along the food chain: Detection of viruses in food. Trends in Food Science and Technology, 22 (Suppl 1), S49–S57. https://doi.org/10.1016/j.tifs.2011.05.008
5. Chen, J., Wu, X., Sanchez, G., Randazzo, W. (2020). Viability RT-qPCR to detect potentially infectious enteric viruses on heat-processed berries. Food Control, 107, Article 106818. https://doi.org/10.1016/j.foodcont.2019.106818
6. Le Guyader, F. S., Mittelholzer, C., Haugarreau, L., Hedlund, K. O., Alsterlund, R., Pommepuy, M. et al. (2004). Detection of noroviruses in raspberries associated with a gastroenteritis outbreak. International Journal of Food Microbiology, 97(2), 179–186. https://doi.org/10.1016/j.ijfoodmicro.2004.04.018
7. Le Guyader, F. S., Atmar, R. L., Le Pendu, J. (2012). Transmission of viruses through shellfish: When specific ligands come into play. Current Opinion in Virology, 2(1), 103–110. https://doi.org/10.1016/j.coviro.2011.10.029
8. Yekta, R., Vahid-Dastjerdi, L., Norouzbeigi, S., Mortazavian, A. M. (2021). Food products as potential carriers of SARS-CoV-2. Food Control, 123, Article 107754. https://doi.org/10.1016/j.foodcont.2020.107754
9. Djekic, I., Nikolić, A., Uzunović, M., Marijke, A., Liu, A., Han, J. et al. (2021). Covid-19 pandemic effects on food safety — Multi-country survey study. Food Control, 122, Article 107800. https://doi.org/10.1016/j.foodcont.2020.107800
10. Miranda, R. C., Schaffner, D. W. (2019). Virus risk in the food supply chain. Current Opinion in Food Science, 30, 43–48, https://doi.org/10.1016/j.cofs.2018.12.002
11. Hrdy, J., Vasickova, P. (2022). Virus detection methods for different kinds of food and water samples–The importance of molecular techniques. Food Control, 134, Article 108764. https://doi.org/10.1016/j.foodcont.2021.108764
12. Sun, B., Bosch, A., Myrmel, M. (2019). Extended direct lysis method for virus detection on berries including droplet digital RT-PCR or real time RT-PCR with reduced influence from inhibitors. Journal of Virological Methods, 271, Article 113638. https://doi.org/10.1016/j.jviromet.2019.04.004
13. Wei, T., Lu, G., Clover, G. (2008). Novel approaches to mitigate primer interaction and eliminate inhibitors in multiplex PCR, demonstrated using an assay for detection of three strawberry viruses. Journal of Virological Methods, 151(1), 132–139. https://doi.org/10.1016/j.jviromet.2008.03.003
14. Mäde, D., Trübner, K., Neubert, E., Höhne, M., Johne, R. (2013). Detection and typing of norovirus from frozen strawberries involved in a large-scale gastroenteritis outbreak in Germany. Food and Environmental Virology, 5, 162–168. https://doi.org/10.1007/s12560-013-9118-0
15. Widén, F. (2016). Hepatitis E as a zoonosis. Chapter in a book: Hepatitis E Virus. Advances in Experimental Medicine and Biology. Springer, Dordrecht, 2016. https://doi.org/10.1007/978-94-024-0942-0_4
16. Meng, X. J. (2010). Hepatitis E virus: animal reservoirs and zoonotic risk. Veterinary Microbiology, 140(3–4), 256–265. https://doi.org/10.1016/j.vetmic.2009.03.017
17. Hamza, I. A., Jurzik, L., Überla, K., Wilhelm, M. (2011). Methods to detect infectious human enteric viruses in environmental water samples. International Journal of Hygiene and Environmental Health, 214(6), 424–436. https://doi.org/10.1016/j.ijheh.2011.07.014
18. Teixeira, P., Costa, S., Brown, B., Silva, S., Rodrigues, R., Valerio, E. (2020). Quantitative PCR detection of enteric viruses in wastewater and environmental water sources by the Lisbon municipality: A case study. Water, 12(2), Article 544. https://doi.org/10.3390/w12020544
19. Farkas, K., Cooper, D. M., McDonald, J. E., Malham, S. K., de Rougemont, A., Jones, D. L. (2018). Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. Science of the Total Environment, 634, 1174–1183. https://doi.org/10.1016/j.scitotenv.2018.04.038
20. Butot, S., Putallaz, T., Sanchez, G. (2007). Procedure for rapid concentration and detection of enteric viruses from berries and vegetables. Applied and Environmental Microbiology, 73(1), 186–192. https://doi.org/10.1128/AEM.01248-06
21. Scherer, K., Johne, R., Schrader, C., Ellerbroek, L., Schulenburg, J., Klein, G. (2010). Comparison of two extraction methods for viruses in food and application in a norovirus gastroenteritis outbreak. Journal of Virological Methods, 169(1), 22–27. https://doi.org/10.1016/j.jviromet.2010.06.008
22. Perrin, A., Loutreul, J., Boudaud, N., Bertrand, I., Gantzer, C. (2015). Rapid, simple and efficient method for detection of viral genomes on raspberries. Journal of Virological Methods, 224, 95–101. https://doi.org/10.1016/j.jviromet.2015.08.005
23. Baert, L., Uyttendaele, M., Debevere, J. (2008). Evaluation of viral extraction methods on a broad range of Ready-To-Eat foods with conventional and realtime RT-PCR for Norovirus GII detection. International Journal of Food Microbiology, 123(1–2), 101–108. https://doi.org/10.1016/j.ijfoodmicro.2007.12.020
24. Bartsch, C., Szabo, K., Dinh-Thanh, M., Schrader, C., Trojnar, E., Johne, R. (2016). Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors. Food Microbiology, 60, 124–130. https://doi.org/10.1016/j.fm.2016.07.005
25. Lowther, J. A., Bosch, A., Butot, S., Ollivier, J., Mäde, D., Rutjes, S. A. et al. (2019). Validation of EN ISO method 15216 — Part 1 — Quantification of hepatitis A virus and norovirus in food matrices. International Journal of Food Microbiology, 288, 82–90. https://doi.org/10.1016/j.ijfoodmicro.2017.11.014
26. Suffredini, E., Magnabosco, C., Civettini, M., Rossetti, E., Arcangeli, G., Croci, L. (2012). Norovirus contamination in different shellfish species harvested in the same production areas. Journal of Applied Microbiology, 113(3), 686–692. https://doi.org/10.1111/j.1365-2672.2012.05356.x
27. Gyawali, P., Kc, S., Beale, D. J., Hewitt, J. (2019). Current and emerging technologies for the detection of norovirus from shellfish. Foods, 8(6), Article 187. https://doi.org/10.3390/foods8060187
28. Chung, S. H., Baek, C., Cong, V. T., Min, J. (2015). The microfluidic chip module for the detection of murine norovirus in oysters using charge switchable micro-bead beating. Biosensors and Bioelectronics, 67, 625–633. https://doi.org/10.1016/j.bios.2014.09.083
29. Kingsley, D. H. (2014). High pressure processing of bivalve shellfish and HPP’s use as a virus intervention. Foods, 3(2), 336–350. https://doi.org/10.3390/foods3020336
30. Le, H. Q., Suffredini, E., Pham, D. T., To, A. K., Medici, D. D. (2018). Development of a method for direct extraction of viral RNA from bivalve molluscs. Letters in Applied Microbiology, 67(5), 426–434. https://doi.org/10.1111/lam.13065
31. Ambrosi, C., Prezioso, C., Checconi, P., Scribano, D., Sarshar, M., Capannari, M. et al. (2021). SARS-CoV-2: Comparative analysis of different RNA extraction methods. Journal of Virological Methods, 287, Article 114008. https://doi.org/10.1016/j.jviromet.2020.114008
32. Griffin, D. W., Donaldson, K. A., Paul, J. H., Rose, J. B. (2003). Pathogenic human viruses in coastal waters. Clinical Microbiology Reviews, 16(1), 129–143. https://doi.org/10.1128/cmr.16.1.129-143.2003
33. Rajiuddin, S. M., Jensen, T., Hansen, T. B., Schultz, A. C. (2020). An optimised direct lysis method for viral RNA extraction and detection of foodborne viruses on fruits and vegetables. Food and Environmental Virology, 12(3), 226–239. https://doi.org/10.1007/s12560-020-09437-x
34. Hennechart-Collette, C., Dehan, O., Fraisse, A., Martin-Latil, S., Perelle, S. (2023). Development of an extraction method to detect hepatitis A Virus, hepatitis E Virus, and noroviruses in fish products. Microorganisms, 11(3), Article 624. https://doi.org/10.3390/microorganisms11030624
35. Greene, S. R., Moe, C. L., Jaykus, L. A., Cronin, M., Grosso, L., van Aarle, P. (2003). Evaluation of the NucliSens basic kit assay for detection of Norwalk virus RNA in stool specimens. Journal of Virological Methods, 108(1), 123–131 https://doi.org/10.1016/S0166-0934(02)00286-0
36. Persson, S., Nybogård, L., Simonsson, M., Eriksson, R. (2020). Optimisation and evaluation of an automated system for extraction of viral RNA from oysters. International Journal of Food Microbiology, 315, Article 108386. https://doi.org/10.1016/j.ijfoodmicro.2019.108386
37. Steele, M., Lambert, D., Bissonnette, R., Yamamoto, E., Hardie, K., Locas, A. (2022). Norovirus GI and GII and hepatitis a virus in berries and pomegranate arils in Canada. International Journal of Food Microbiology, 379, Article 109840. https://doi.org/10.1016/j.ijfoodmicro.2022.109840
38. Bernard, H., Faber, M., Wilking, H., Haller, S., Höhle, M., Schielke, A. et al. (2014). Large multistate outbreak of norovirus gastroenteritis associated with frozen strawberries, Germany, 2012. Eurosurveillance, 19(8), Article 20719. https://doi.org/10.2807/1560-7917.es2014.19.8.20719
39. Bozkurt, H., Phan-Thien, K.-Y., van Ogtrop, F., Bell, T., McConchie, R. (2021). Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Critical Reviews in Food Science and Nutrition, 61(1), 116–138. https://doi.org/10.1080/10408398.2020.1719383
40. Pouillot, R., Smith, M., Van Doren, J. M., Catford, A., Holtzman, J., Calci, K. R. et al. (2022). Risk assessment of norovirus illness from consumption of raw oysters in the United States and in Canada. Risk Analysis, 42(2), 344–369. https://doi.org/10.1111/risa.13755
41. Dirks, R. A. M., Jansen, C. C. C., Hägele, G., Zwartkruis-Nahuis, A. J. T., Tijsma, A. S. L., Boxman, I. L. A. (2021). Quantitative levels of norovirus and hepatitis A virus in bivalve molluscs collected along the food chain in the Netherlands, 2013–2017. International Journal of Food Microbiology, 344, Article 109089. https://doi.org/10.1016/j.ijfoodmicro.2021.109089
42. Gao, X., Wang, Z., Wang, Y., Liu, Z., Guan, X., Ma, Y. et al. (2019). Surveillance of norovirus contamination in commercial fresh/frozen berries from Heilongjiang Province, China, using a TaqMan real-time RT-PCR assay. Food Microbiology, 82, 119–126. https://doi.org/10.1016/j.fm.2019.01.017
43. Cook, N., Williams, L., D’Agostino, M. (2019). Prevalence of Norovirus in produce sold at retail in the United Kingdom. Food Microbiology, 79, 85–89. https://doi.org/10.1016/j.fm.2018.12.003
44. Moor, D., Liniger, M., Baumgartner, A., Felleisen, R. (2018). Screening of readyto-eat meat products for hepatitis E virus in Switzerland. Food and Environmental Virology, 10(3), 263–271. https://doi.org/10.1007/s12560-018-9340-x
45. Park, W.-J., Park, B.-J., Ahn, H.-S., Lee, J.-B., Park, S.-Y., Song, C.-S. et al. (2016). Hepatitis E virus as an emerging zoonotic pathogen. Journal of Veterinary Science, 17(1), 1–11. https://doi.org/10.4142/jvs.2016.17.1.1
46. Lainšček, P. R., Toplak, I., Kirbiš, A. (2017). A comprehensive study of hepatitis E virus infection in pigs entering a slaughterhouse in Slovenia. Veterinary Microbiology, 212, 52–58. https://doi.org/10.1016/j.vetmic.2017.11.002
47. Pavio, N., Merbah, T., Thébault, A. (2014). Frequent hepatitis E virus contamination in food containing raw pork liver, France. Emerging Infectious Diseases, 20(11), 1925–1927. https://doi.org/10.3201/eid2011.140891
48. Di Bartolo, I., Angeloni, G., Ponterio, E., Ostanello, F., Ruggeri, F. M. (2015). Detection of hepatitis E virus in pork liver sausages. International Journal of Food Microbiology, 193, 29–33. https://doi.org/10.1016/j.ijfoodmicro.2014.10.005
49. Milojević, L., Velebit, B., Teodorović, V., Kirbiš, A., Petrović, T., Karabasil, N. et al. (2019). Screening and molecular characterization of hepatitis E virus in slaughter pigs in Serbia. Food and Environmental Virology, 11(4), 410–419. https://doi.org/10.1007/s12560-019-09393-1
Рецензия
Для цитирования:
Юшина Ю.К., Семенова А.А., Кузнецова О.А., Сатабаева Д.М., Зайко Е.В., Велебит Б. Оценка эффективности экстракции вирусов из пищевых матриц и частоты встречаемости контаминированных продуктов в торговой сети. Пищевые системы. 2023;6(4):463-470. https://doi.org/10.21323/2618-9771-2023-6-4-463-470
For citation:
Yushina Yu.K., Semenova A.A., Kuznecova O.A., Satabaeva D.M., Zaiko E.V., Velebit B. Assessment of the efficiency of virus extraction from food matrices and the frequency of occurrence of contaminated products in the retail network. Food systems. 2023;6(4):463-470. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-4-463-470