Preview

Food systems

Advanced search

Assessment of the efficiency of virus extraction from food matrices and the frequency of occurrence of contaminated products in the retail network

https://doi.org/10.21323/2618-9771-2023-6-4-463-470

Abstract

Express detection of viruses, in particular, norovirus (NoV) and hepatitis A virus (HAV), is becoming an extremely important task for food safety control. This study examines various approaches to recovery of viral particles and methods for RNA extraction from food matrices to assess mengovirus extraction efficiency. Efficiency of mengovirus extraction from raspberry was 14.26%, from oysters 7.99%, from pork liver 8.33%. Assessment of RNA extraction by various methods was carried out. The highest efficiency of mengovirus extraction from pork liver (19.37%) was observed when RNA was extracted using the eGene-up semi-automatic system. The lowest extraction efficiency (5.31%) was achieved upon manual RNA extraction. When RNA was extracted from oysters, the maximum efficiency (33.35%) was ensured by the AutoPure nucleic acid extraction station and NucliSens kit, while the minimum efficiency (9.78%) was observed when using the eGene-up system. The performed monitoring of food products showed that the highest occurrence of norovirus GII was recorded in oyster samples (9.6% of tested samples); the second place was occupied by strawberry, where occurrence of norovirus GII was 6.8%. In the raspberry samples, norovirus GII was not detected.

About the Authors

Yu. K. Yushina
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Yuliya K. Yushina, Doctor of Technical Sciences, Head of laboratory of Hygiene of Production and Microbiology

26, Talalikhina str. 109316, Moscow, Tel.: +7–495–676–95–11 (402)



A. A. Semenova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Anastasia A.  Semenova, Doctor of Technical Sciences, Professor, Deputy Director

26, Talalikhina str., 109316, Moscow, Tel.: +7–495–676–95–11 (105)



O. A. Kuznecova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Oksana A. Kuznecova, Doctor of Technical Sciences, Director

26, Talalikhina str., 109316, Moscow, Russia Tel.: +7–495–676–95–11 (106)



D. M. Satabaeva
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Dagmara M. Satabaeva, Research Engineer, laboratory of Hygiene of Production and Microbiology

26, Talalikhina str., 109316, Moscow, Tel.: +7–495–676–95–11 (405)



E. V. Zaiko
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Elena V. Zaiko, Candidate of Technical Sciences, Junior Research Assistant, Laboratory of Hygiene of Production and Microbiology

26, Talalikhina str., 109316, Moscow, Tel.: +7–495–676–95–11 (407)



B. Velebit
Institute of Meat Hygiene and Technology
Russian Federation

Branko Velebit, M. Sc. DVM, Principal Research Fellow, Head of Department of Microbiology and Molecular Biology

Kaćanskog 13, 11040 Belgrade, Serbia Tel.: +381–11–2650–722



References

1. Bachofen, C. (2018). Selected viruses detected on and in our food. Current Clinical Microbiology Reports, 5, 143–153. https://doi.org/10.1007/s40588-018-0087-9

2. Predmore, A., Li, J. (2011). Enhanced removal of a human norovirus surrogate from fresh vegetables and fruits by a combination of surfactants and sanitizers. Applied and Environmental Microbiology, 77(14), 4829–4838. https://doi.org/10.1128/AEM.00174-11

3. King, T., Cole, M., Farber, J. M., Eisenbrand, G., Zabaras, D., Fox, E. M. et al. (2017). Food safety for food security: Relationship between global megatrends and developments in food safety. Trends in Food Science and Technology, 68, 160–175. https://doi.org/10.1016/j.tifs.2017.08.014

4. Widén, F., Vågsholm, I., Belák, S., Muradrasoli, S. (2011). Achievement V–Methods for breaking the transmission of pathogens along the food chain: Detection of viruses in food. Trends in Food Science and Technology, 22 (Suppl 1), S49–S57. https://doi.org/10.1016/j.tifs.2011.05.008

5. Chen, J., Wu, X., Sanchez, G., Randazzo, W. (2020). Viability RT-qPCR to detect potentially infectious enteric viruses on heat-processed berries. Food Control, 107, Article 106818. https://doi.org/10.1016/j.foodcont.2019.106818

6. Le Guyader, F. S., Mittelholzer, C., Haugarreau, L., Hedlund, K. O., Alsterlund, R., Pommepuy, M. et al. (2004). Detection of noroviruses in raspberries associated with a gastroenteritis outbreak. International Journal of Food Microbiology, 97(2), 179–186. https://doi.org/10.1016/j.ijfoodmicro.2004.04.018

7. Le Guyader, F. S., Atmar, R. L., Le Pendu, J. (2012). Transmission of viruses through shellfish: When specific ligands come into play. Current Opinion in Virology, 2(1), 103–110. https://doi.org/10.1016/j.coviro.2011.10.029

8. Yekta, R., Vahid-Dastjerdi, L., Norouzbeigi, S., Mortazavian, A. M. (2021). Food products as potential carriers of SARS-CoV-2. Food Control, 123, Article 107754. https://doi.org/10.1016/j.foodcont.2020.107754

9. Djekic, I., Nikolić, A., Uzunović, M., Marijke, A., Liu, A., Han, J. et al. (2021). Covid-19 pandemic effects on food safety — Multi-country survey study. Food Control, 122, Article 107800. https://doi.org/10.1016/j.foodcont.2020.107800

10. Miranda, R. C., Schaffner, D. W. (2019). Virus risk in the food supply chain. Current Opinion in Food Science, 30, 43–48, https://doi.org/10.1016/j.cofs.2018.12.002

11. Hrdy, J., Vasickova, P. (2022). Virus detection methods for different kinds of food and water samples–The importance of molecular techniques. Food Control, 134, Article 108764. https://doi.org/10.1016/j.foodcont.2021.108764

12. Sun, B., Bosch, A., Myrmel, M. (2019). Extended direct lysis method for virus detection on berries including droplet digital RT-PCR or real time RT-PCR with reduced influence from inhibitors. Journal of Virological Methods, 271, Article 113638. https://doi.org/10.1016/j.jviromet.2019.04.004

13. Wei, T., Lu, G., Clover, G. (2008). Novel approaches to mitigate primer interaction and eliminate inhibitors in multiplex PCR, demonstrated using an assay for detection of three strawberry viruses. Journal of Virological Methods, 151(1), 132–139. https://doi.org/10.1016/j.jviromet.2008.03.003

14. Mäde, D., Trübner, K., Neubert, E., Höhne, M., Johne, R. (2013). Detection and typing of norovirus from frozen strawberries involved in a large-scale gastroenteritis outbreak in Germany. Food and Environmental Virology, 5, 162–168. https://doi.org/10.1007/s12560-013-9118-0

15. Widén, F. (2016). Hepatitis E as a zoonosis. Chapter in a book: Hepatitis E Virus. Advances in Experimental Medicine and Biology. Springer, Dordrecht, 2016. https://doi.org/10.1007/978-94-024-0942-0_4

16. Meng, X. J. (2010). Hepatitis E virus: animal reservoirs and zoonotic risk. Veterinary Microbiology, 140(3–4), 256–265. https://doi.org/10.1016/j.vetmic.2009.03.017

17. Hamza, I. A., Jurzik, L., Überla, K., Wilhelm, M. (2011). Methods to detect infectious human enteric viruses in environmental water samples. International Journal of Hygiene and Environmental Health, 214(6), 424–436. https://doi.org/10.1016/j.ijheh.2011.07.014

18. Teixeira, P., Costa, S., Brown, B., Silva, S., Rodrigues, R., Valerio, E. (2020). Quantitative PCR detection of enteric viruses in wastewater and environmental water sources by the Lisbon municipality: A case study. Water, 12(2), Article 544. https://doi.org/10.3390/w12020544

19. Farkas, K., Cooper, D. M., McDonald, J. E., Malham, S. K., de Rougemont, A., Jones, D. L. (2018). Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. Science of the Total Environment, 634, 1174–1183. https://doi.org/10.1016/j.scitotenv.2018.04.038

20. Butot, S., Putallaz, T., Sanchez, G. (2007). Procedure for rapid concentration and detection of enteric viruses from berries and vegetables. Applied and Environmental Microbiology, 73(1), 186–192. https://doi.org/10.1128/AEM.01248-06

21. Scherer, K., Johne, R., Schrader, C., Ellerbroek, L., Schulenburg, J., Klein, G. (2010). Comparison of two extraction methods for viruses in food and application in a norovirus gastroenteritis outbreak. Journal of Virological Methods, 169(1), 22–27. https://doi.org/10.1016/j.jviromet.2010.06.008

22. Perrin, A., Loutreul, J., Boudaud, N., Bertrand, I., Gantzer, C. (2015). Rapid, simple and efficient method for detection of viral genomes on raspberries. Journal of Virological Methods, 224, 95–101. https://doi.org/10.1016/j.jviromet.2015.08.005

23. Baert, L., Uyttendaele, M., Debevere, J. (2008). Evaluation of viral extraction methods on a broad range of Ready-To-Eat foods with conventional and realtime RT-PCR for Norovirus GII detection. International Journal of Food Microbiology, 123(1–2), 101–108. https://doi.org/10.1016/j.ijfoodmicro.2007.12.020

24. Bartsch, C., Szabo, K., Dinh-Thanh, M., Schrader, C., Trojnar, E., Johne, R. (2016). Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors. Food Microbiology, 60, 124–130. https://doi.org/10.1016/j.fm.2016.07.005

25. Lowther, J. A., Bosch, A., Butot, S., Ollivier, J., Mäde, D., Rutjes, S. A. et al. (2019). Validation of EN ISO method 15216 — Part 1 — Quantification of hepatitis A virus and norovirus in food matrices. International Journal of Food Microbiology, 288, 82–90. https://doi.org/10.1016/j.ijfoodmicro.2017.11.014

26. Suffredini, E., Magnabosco, C., Civettini, M., Rossetti, E., Arcangeli, G., Croci, L. (2012). Norovirus contamination in different shellfish species harvested in the same production areas. Journal of Applied Microbiology, 113(3), 686–692. https://doi.org/10.1111/j.1365-2672.2012.05356.x

27. Gyawali, P., Kc, S., Beale, D. J., Hewitt, J. (2019). Current and emerging technologies for the detection of norovirus from shellfish. Foods, 8(6), Article 187. https://doi.org/10.3390/foods8060187

28. Chung, S. H., Baek, C., Cong, V. T., Min, J. (2015). The microfluidic chip module for the detection of murine norovirus in oysters using charge switchable micro-bead beating. Biosensors and Bioelectronics, 67, 625–633. https://doi.org/10.1016/j.bios.2014.09.083

29. Kingsley, D. H. (2014). High pressure processing of bivalve shellfish and HPP’s use as a virus intervention. Foods, 3(2), 336–350. https://doi.org/10.3390/foods3020336

30. Le, H. Q., Suffredini, E., Pham, D. T., To, A. K., Medici, D. D. (2018). Development of a method for direct extraction of viral RNA from bivalve molluscs. Letters in Applied Microbiology, 67(5), 426–434. https://doi.org/10.1111/lam.13065

31. Ambrosi, C., Prezioso, C., Checconi, P., Scribano, D., Sarshar, M., Capannari, M. et al. (2021). SARS-CoV-2: Comparative analysis of different RNA extraction methods. Journal of Virological Methods, 287, Article 114008. https://doi.org/10.1016/j.jviromet.2020.114008

32. Griffin, D. W., Donaldson, K. A., Paul, J. H., Rose, J. B. (2003). Pathogenic human viruses in coastal waters. Clinical Microbiology Reviews, 16(1), 129–143. https://doi.org/10.1128/cmr.16.1.129-143.2003

33. Rajiuddin, S. M., Jensen, T., Hansen, T. B., Schultz, A. C. (2020). An optimised direct lysis method for viral RNA extraction and detection of foodborne viruses on fruits and vegetables. Food and Environmental Virology, 12(3), 226–239. https://doi.org/10.1007/s12560-020-09437-x

34. Hennechart-Collette, C., Dehan, O., Fraisse, A., Martin-Latil, S., Perelle, S. (2023). Development of an extraction method to detect hepatitis A Virus, hepatitis E Virus, and noroviruses in fish products. Microorganisms, 11(3), Article 624. https://doi.org/10.3390/microorganisms11030624

35. Greene, S. R., Moe, C. L., Jaykus, L. A., Cronin, M., Grosso, L., van Aarle, P. (2003). Evaluation of the NucliSens basic kit assay for detection of Norwalk virus RNA in stool specimens. Journal of Virological Methods, 108(1), 123–131 https://doi.org/10.1016/S0166-0934(02)00286-0

36. Persson, S., Nybogård, L., Simonsson, M., Eriksson, R. (2020). Optimisation and evaluation of an automated system for extraction of viral RNA from oysters. International Journal of Food Microbiology, 315, Article 108386. https://doi.org/10.1016/j.ijfoodmicro.2019.108386

37. Steele, M., Lambert, D., Bissonnette, R., Yamamoto, E., Hardie, K., Locas, A. (2022). Norovirus GI and GII and hepatitis a virus in berries and pomegranate arils in Canada. International Journal of Food Microbiology, 379, Article 109840. https://doi.org/10.1016/j.ijfoodmicro.2022.109840

38. Bernard, H., Faber, M., Wilking, H., Haller, S., Höhle, M., Schielke, A. et al. (2014). Large multistate outbreak of norovirus gastroenteritis associated with frozen strawberries, Germany, 2012. Eurosurveillance, 19(8), Article 20719. https://doi.org/10.2807/1560-7917.es2014.19.8.20719

39. Bozkurt, H., Phan-Thien, K.-Y., van Ogtrop, F., Bell, T., McConchie, R. (2021). Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Critical Reviews in Food Science and Nutrition, 61(1), 116–138. https://doi.org/10.1080/10408398.2020.1719383

40. Pouillot, R., Smith, M., Van Doren, J. M., Catford, A., Holtzman, J., Calci, K. R. et al. (2022). Risk assessment of norovirus illness from consumption of raw oysters in the United States and in Canada. Risk Analysis, 42(2), 344–369. https://doi.org/10.1111/risa.13755

41. Dirks, R. A. M., Jansen, C. C. C., Hägele, G., Zwartkruis-Nahuis, A. J. T., Tijsma, A. S. L., Boxman, I. L. A. (2021). Quantitative levels of norovirus and hepatitis A virus in bivalve molluscs collected along the food chain in the Netherlands, 2013–2017. International Journal of Food Microbiology, 344, Article 109089. https://doi.org/10.1016/j.ijfoodmicro.2021.109089

42. Gao, X., Wang, Z., Wang, Y., Liu, Z., Guan, X., Ma, Y. et al. (2019). Surveillance of norovirus contamination in commercial fresh/frozen berries from Heilongjiang Province, China, using a TaqMan real-time RT-PCR assay. Food Microbiology, 82, 119–126. https://doi.org/10.1016/j.fm.2019.01.017

43. Cook, N., Williams, L., D’Agostino, M. (2019). Prevalence of Norovirus in produce sold at retail in the United Kingdom. Food Microbiology, 79, 85–89. https://doi.org/10.1016/j.fm.2018.12.003

44. Moor, D., Liniger, M., Baumgartner, A., Felleisen, R. (2018). Screening of readyto-eat meat products for hepatitis E virus in Switzerland. Food and Environmental Virology, 10(3), 263–271. https://doi.org/10.1007/s12560-018-9340-x

45. Park, W.-J., Park, B.-J., Ahn, H.-S., Lee, J.-B., Park, S.-Y., Song, C.-S. et al. (2016). Hepatitis E virus as an emerging zoonotic pathogen. Journal of Veterinary Science, 17(1), 1–11. https://doi.org/10.4142/jvs.2016.17.1.1

46. Lainšček, P. R., Toplak, I., Kirbiš, A. (2017). A comprehensive study of hepatitis E virus infection in pigs entering a slaughterhouse in Slovenia. Veterinary Microbiology, 212, 52–58. https://doi.org/10.1016/j.vetmic.2017.11.002

47. Pavio, N., Merbah, T., Thébault, A. (2014). Frequent hepatitis E virus contamination in food containing raw pork liver, France. Emerging Infectious Diseases, 20(11), 1925–1927. https://doi.org/10.3201/eid2011.140891

48. Di Bartolo, I., Angeloni, G., Ponterio, E., Ostanello, F., Ruggeri, F. M. (2015). Detection of hepatitis E virus in pork liver sausages. International Journal of Food Microbiology, 193, 29–33. https://doi.org/10.1016/j.ijfoodmicro.2014.10.005

49. Milojević, L., Velebit, B., Teodorović, V., Kirbiš, A., Petrović, T., Karabasil, N. et al. (2019). Screening and molecular characterization of hepatitis E virus in slaughter pigs in Serbia. Food and Environmental Virology, 11(4), 410–419. https://doi.org/10.1007/s12560-019-09393-1


Review

For citations:


Yushina Yu.K., Semenova A.A., Kuznecova O.A., Satabaeva D.M., Zaiko E.V., Velebit B. Assessment of the efficiency of virus extraction from food matrices and the frequency of occurrence of contaminated products in the retail network. Food systems. 2023;6(4):463-470. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-4-463-470

Views: 723


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)