Network pharmacology and molecular docking study to reveal the potential anticancer activity of Oscillatoxin D, E, and F marine cytotoxins
https://doi.org/10.21323/2618-9771-2023-6-3-365-389
Abstract
Oscillatoxins (OTXs) are cytotoxins produced by some marine cyanobacteria. Their unique structures show a great potency as an anticancer agent. The limited availability of OTX derivatives in nature provides little information about their biological activity. Some of OTX activities have been tested in the in vitro or in vivo studies toward cancer cell lines, but their exact mechanism of action on the target is unclear. In this study, we used the network pharmacology analysis method to predict the target and mechanism of action of oscillatoxin D (OTX-D), 30 methyl oscillatoxin D (30-methyl-OTX-D), oscillatoxin E (OTX-E), and oscillatoxin F (OTX-F). There are 20 possible targets of the four compounds toward cancer, and the main targets of them are PIK3CA, CDK1, and MTOR. This was also followed by the molecular docking study to understand the interaction between the four compounds and their targets. Molecular docking showed that the four compounds interacted well with the key targets. In this study, four derivatives of OTXs and their three key targets for the anticancer action were revealed suggesting multiple signaling pathways, including PD-L1 expression and PD‑1 checkpoint pathway in cancer, proteoglycans in cancer, and pathways in cancer, establishing a theoretical framework for the further experimental study.
About the Authors
D. LuthfianaIndonesia
Dewi Luthfiana, Bachelor of Science, Researcher
Pakisaji, Kab.Malang, Jawa Timur, 65162
+628–533–645–32–24
M. Soleha
Indonesia
Maratu Soleha, Master of Biotechnology, Researcher
Jl. M. H. Thamrin No. 8, Jakarta Pusat, 10340
+628–953–452–30–62
A. Prasetiyo
Indonesia
Andri Prasetiyo, Doctor in Pharmaceutical Science, Assistant Professor
Jalan Raya Lenteng Agung No.56–80, Srengseng Sawah, Jagakarsa, Jakarta 12640
+628–128–654–61–48
W. A. Kusuma
Indonesia
Wisnu A. Kusuma, PhD in Computer Science, Associate Professor
Jln. Meranti, Kampus IPB Darmaga, Bogor, 16680
Jl. Taman Kencana No. 3, Bogor, 16128
+622–518–37–35–61
R. Fatriani
Indonesia
Rizka Fatriani, Master in Biology, Research Assistant
Jl. Taman Kencana No. 3, Bogor, 16128
+622–518–37–35–61
L. Nurfadhila
Indonesia
Lina Nurfadhila, Master in Pharmaceutical Science, Lecturer
Jl. HS. Ronggo Waluyo, Karawang, West Java, 41363
+628–572–343–23–10
N. Yunitasari
Indonesia
Norainny Yunitasari, Doctor in Chemistry, Lecturer
Jl. Proklamasi 54, Gresik, East Java, 61121
+628–123–442–26–26
A. H. Ahkam
Indonesia
Ahmad H. Ahkam, Master student in Pharmacology
Jl. Ir. Soekarno km.21, Kab. Sumedang, West Java, 40132
+628–521–988–34–77
T. L. Wargasetia
Indonesia
Teresa L. Wargasetia, Doctor in Medical Science, Associate Professor
Jl. Prof. drg. Surya Sumantri, M.P.H. No. 65 Bandung, West Java, 40164
+622–220–121–86
R. Irfandi
Indonesia
Rizal Irfandi, Master of Chemistry, Assistant Professor
Jalan Puangrimaggalatung No 27, Sengkang, 90915
+628–239–364–43–53
A. N. M. Ansori
India
Arif N. M. Ansori, PhD in Veterinary Science, Researcher
Jl. Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, 60115
+628–214–464–78–32
V. D. Kharisma
Indonesia
Viol D. Kharisma, Master of Science, PhD Student
Jl. Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, 60115
+628–121–78–70–02
S. W. Naw
Myanmar
Sin W. Naw, Master of Science, Lecturer
CC95+FWM, Myitkyina
+959–440–00–71–12
E. Ullah
United States
Emdad Ullah, Master of Science, PhD Student
310 President Cir, Mississippi, Mississippi State
+1–662–617–56–70
V. Jakhmola
India
Vikash Jakhmola, Professor, Professor
Chakrata Rd, Prem Nagar, Dehradun, Uttarakhand, 248007
+918–126–00–96–20
R. Zainul
Indonesia
Rahadian Zainul, Professor in Chemistry, Professor
Jl. Prof. Dr. Hamka, Air Tawar Bar., Kec. Padang Utara, Kota Padang, Sumatera Barat
+628–126–138–53–85
References
1. Araki, Y., Hanaki, Y., Kita, M., Hayakawa, K., Irie, K., Nokura, Y. et al. (2021). Total synthesis and biological evaluation of oscillatoxins D, E, and F. Bioscience, Biotechnology and Biochemistry, 85(6), 1371–1382. https://doi.org/10.1093/bbb/zbab042
2. Leveridge, M., Chung, C. -W., Gross, J. W., Phelps, C. B., Green, D. (2018). Integration of lead discovery tactics and the evolution of the lead discovery toolbox. SLAS Discovery, 23(9), 881–897. https://doi.org/10.1177/2472555218778503
3. Rasul, A., Riaz, A., Sarfraz, I., Khan, S. G., Hussain, G., Zara, R. et al. (2022). Chapter in a book: Target identification approaches in drug discovery. Springer, Cham, 2022. https://doi.org/10.1007/978–3–030–95895–4_3
4. Open chemistry database at the National Institutes of Health (NIH). Retrieved from https://pubchem.ncbi.nlm.nih.gov/ Accessed January 15, 2023
5. Swiss Institute of Bioinformatics. Retrieved from http://www.swissadme.ch/index.php Accessed January 15, 2023
6. Royal Society of Chemistry. Retrieved from http://www.chemspider.com/Accessed January 15, 2023
7. The Swiss Target Prediction database. Retrieved from http://swisstargetprediction.ch/ Accessed January 25, 2023
8. The Anatomical Therapeutic Chemical (ATC) classification system. Retrieved from https://prediction.charite.de/ Accessed January 25, 2023
9. Protein-Protein Interaction Networks Functional Enrichment Analysis. Retrieved from http://string-db.org Accessed January 25, 2023
10. Network Data Integration, Analysis, and Visualization in a Box. Retrieved from https://cytoscape.org/ Accessed January 25, 2023
11. A Gene Annotation and Analysis Resource. Retrieved from https://metascape.org Accessed January 25, 2023
12. Database of medicinal substances with chemical, pharmacological and pharmaceutical information. Retrieved from https://go.drugbank.com/drugs Accessed January 25, 2023
13. Zhang, M., Jang, H., Nussinov, R. (2020). Structural features that distinguish inactive and active PI3K lipid kinases. Journal of Molecular Biology, 432(22), 5849–5859. https://doi.org/10.1016/j.jmb.2020.09.002
14. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, Article 33. https://doi.org/10.1186/1758–2946–3–33
15. Kumar, A., Zhang, K. Y. J. (2013). Investigation on the effect of key water molecules on docking performance in CSARdock exercise. Journal of Chemical Information and Modeling, 53(8), 1880–1892. https://doi.org/10.1021/ci400052w
16. Huang, N., Shoichet, B. K. (2008). Exploiting ordered waters in molecular docking. Journal of Medicinal Chemistry, 51(16), 4862–4865. https://doi.org/10.1021/jm8006239
17. Laskowski, R. A., Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
18. Budama-Kilinc, Y., Gok, B., Kecel-Gunduz, S., Altuntas, E. (2022). Development of nanoformulation for hyperpigmentation disorders: Experimental evaluations, in vitro efficacy and in silico molecular docking studies. Arabian Journal of Chemistry, 15(12), Article 104362. https://doi.org/10.1016/j.arabjc.2022.104362
19. Wood, D. J., Korolchuk, S., Tatum, N. J., Wang, L. -Z., Endicott, J. A., Noble, M. E. M. et al. (2019). Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chemical Biology, 26(1), 121–130. https://doi.org/10.1016/j.chembiol.2018.10.015
20. Pantsar, T., Poso, A. (2018). Binding affinity via docking: Fact and fiction. Molecules, 23(8), Article 1899. https://doi.org/10.3390/molecules23081899
21. Zhang, M., Jang, H., Nussinov, R. (2020). PI3K inhibitors: Review and new strategies. Chemical Science, 11(23), 5855–5865. https://doi.org/10.1039/d0sc01676d
22. El-Khouly, O. A., Henen, M. A., El-Sayed, M. A.-A., El-Messery, S. M. (2022). Design, synthesis and computational study of new benzofuran hybrids as dual PI3K/VEGFR2 inhibitors targeting cancer. Scientific Reports, 12(1), Article 17104. https://doi.org/10.1038/s41598–022–21277–2
23. Deivanayagam, C. C. S., Carson, M., Thotakura, A., Narayana, S. V., Chodavarapu, R. S. (2000). Structure of FKBP12.6 in complex with rapamycin. Acta Crystallographica Section D: Biological Crystallography, 56(Part 3), 266–271. https://doi.org/10.1107/s0907444999016571
24. Zou, Z., Tao, T., Li, H., Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell and Bioscience, 10(1), Article 31. https://doi.org/10.1186/s13578–020–00396–1
25. Yunitasari, N., Raharjo, T. J., Swasono, R. T., Pranowo, H. D. (2022). Identification α-amylase inhibitors of Vernonia amygdalina leaves extract using metabolite profiling combined with molecular docking. Indonesian Journal of Chemistry, 22(2), 526–538. https://doi.org/10.22146/ijc.71499
26. Arcoleo, J. P., Weinstein, I. B. (1985). Activation of protein kinase C by tumor promoting phorbol esters, teleocidin and aplysiatoxin in the absence of added calcium. Cardnogenesis, 6(2), 213–217. https://doi.org/10.1093/carcin/6.2.213
27. Lin, A., Giuliano, C. J., Palladino, A., John, K. M., Abramowicz, C., Yuan, M. L. et al. (2019). Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 11(509), Article eaaw8412. https://doi.org/10.1126/scitranslmed.aaw8412
28. Yap, B. H. J., Crawford, S. A., Dagastine, R. R., Scales, P. J., Martin, G. J. O. (2016). Nitrogen deprivation of microalgae: Effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. Journal of Industrial Microbiology and Biotechnology, 43(12), 1671–1680. https://doi.org/10.1007/s10295–016–1848–1
29. Du, Z., Lovly, C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer, 17(1), Article 58. https://doi.org/10.1186/s12943–018–0782–4
30. Novikov, N. M., Zolotaryova, S. Y., Gautreau, A. M., Denisov, E. V. (2020). Mutational drivers of cancer cell migration and invasion. British Journal of Cancer, 124(1), 102–114. https://doi.org/10.1038/s41416–020–01149–0
31. Katayama, A., Miligy, I. M., Shiino, S., Toss, M. S., Eldib, K., Kurozumi, S. et al. (2021). Predictors of pathological complete response to neoadjuvant treatment and changes to post-neoadjuvant HER2 status in HER2-positive invasive breast cancer. Modern Pathology, 34(7), 1271–1281. https://doi.org/10.1038/s41379–021–00738–5
32. Klaunig, J. E. (2018). Oxidative stress and cancer. Current Pharmaceutical Design, 24(40), 4771–4778. https://doi.org/10.2174/1381612825666190215121712
33. Li, J., Zhong, L., Wang, F., Zhu, H. (2017). Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharmaceutica Sinica B, 7(3), 249–259. https://doi.org/10.1016/j.apsb.2016.12.003
Review
For citations:
Luthfiana D., Soleha M., Prasetiyo A., Kusuma W.A., Fatriani R., Nurfadhila L., Yunitasari N., Ahkam A.H., Wargasetia T.L., Irfandi R., Ansori A.N., Kharisma V.D., Naw S.W., Ullah E., Jakhmola V., Zainul R. Network pharmacology and molecular docking study to reveal the potential anticancer activity of Oscillatoxin D, E, and F marine cytotoxins. Food systems. 2023;6(3):365-389. https://doi.org/10.21323/2618-9771-2023-6-3-365-389