Preview

Food systems

Advanced search

Network pharmacology and molecular docking study to reveal the potential anticancer activity of Oscillatoxin D, E, and F marine cytotoxins

https://doi.org/10.21323/2618-9771-2023-6-3-365-389

Full Text:

Abstract

Oscillatoxins (OTXs) are cytotoxins produced by some marine cyanobacteria. Their unique structures show a great potency as an anticancer agent. The limited availability of OTX derivatives in nature provides little information about their biological activity. Some of OTX activities have been tested in the in vitro or in vivo studies toward cancer cell lines, but their exact mechanism of action on the target is unclear. In this study, we used the network pharmacology analysis method to predict the target and mechanism of action of oscillatoxin D (OTX-D), 30 methyl oscillatoxin D (30-methyl-OTX-D), oscillatoxin E (OTX-E), and oscillatoxin F (OTX-F). There are 20 possible targets of the four compounds toward cancer, and the main targets of them are PIK3CA, CDK1, and MTOR. This was also followed by the molecular docking study to understand the interaction between the four compounds and their targets. Molecular docking showed that the four compounds interacted well with the key targets. In this study, four derivatives of OTXs and their three key targets for the anticancer action were revealed suggesting multiple signaling pathways, including PD-L1 expression and PD‑1 checkpoint pathway in cancer, proteoglycans in cancer, and pathways in cancer, establishing a theoretical framework for the further experimental study.

About the Authors

D. Luthfiana
Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO)
Indonesia

Dewi Luthfiana, Bachelor of Science, Researcher

Pakisaji, Kab.Malang, Jawa Timur, 65162

+628–533–645–32–24



M. Soleha
National Research and Innovation Agency
Indonesia

Maratu Soleha, Master of Biotechnology, Researcher

Jl. M. H. Thamrin No. 8, Jakarta Pusat, 10340

+628–953–452–30–62



A. Prasetiyo
Department of Pharmaceutical Science, Faculty of Pharmacy, Pancasila University
Indonesia

Andri Prasetiyo, Doctor in Pharmaceutical Science, Assistant Professor

Jalan Raya Lenteng Agung No.56–80, Srengseng Sawah, Jagakarsa, Jakarta 12640

+628–128–654–61–48



W. A. Kusuma
Department of Computer Science, Faculty Mathematics and Natural Sciences, IPB University; Tropical Biopharmaca Research Center, IPB University
Indonesia

Wisnu A. Kusuma, PhD in Computer Science, Associate Professor

Jln. Meranti, Kampus IPB Darmaga, Bogor, 16680

Jl. Taman Kencana No. 3, Bogor, 16128

+622–518–37–35–61



R. Fatriani
Tropical Biopharmaca Research Center, IPB University
Indonesia

Rizka Fatriani, Master in Biology, Research Assistant

Jl. Taman Kencana No. 3, Bogor, 16128

+622–518–37–35–61



L. Nurfadhila
Department of Pharmacy, Faculty of Health Sciences, Singaperbangsa Karawang University
Indonesia

Lina Nurfadhila, Master in Pharmaceutical Science, Lecturer

Jl. HS. Ronggo Waluyo, Karawang, West Java, 41363

+628–572–343–23–10



N. Yunitasari
Faculty of Health, University of Muhammadiyah Gresik
Indonesia

Norainny Yunitasari, Doctor in Chemistry, Lecturer

Jl. Proklamasi 54, Gresik, East Java, 61121

+628–123–442–26–26



A. H. Ahkam
Faculty of Pharmacy, Padjadjaran University
Indonesia

Ahmad H. Ahkam, Master student in Pharmacology

Jl. Ir. Soekarno km.21, Kab. Sumedang, West Java, 40132

+628–521–988–34–77



T. L. Wargasetia
Faculty of Medicine, Maranatha Christian University
Indonesia

Teresa L. Wargasetia, Doctor in Medical Science, Associate Professor

Jl. Prof. drg. Surya Sumantri, M.P.H. No. 65 Bandung, West Java, 40164

+622–220–121–86



R. Irfandi
Department of Biology Education, Faculty of Teacher Training and Education, Universitas Puangrimaggalatung
Indonesia

Rizal Irfandi, Master of Chemistry, Assistant Professor

Jalan Puangrimaggalatung No 27, Sengkang, 90915

+628–239–364–43–53



A. N. M. Ansori
Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University; Postgraduate School, Universitas Airlangga
India

Arif N. M. Ansori, PhD in Veterinary Science, Researcher

Jl. Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, 60115

+628–214–464–78–32



V. D. Kharisma
Department of Biology, Faculty of Science and Technology, Universitas Airlangga; Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation
Indonesia

Viol D. Kharisma, Master of Science, PhD Student

Jl. Mulyorejo, Kec. Mulyorejo, Surabaya, East Java, 60115

+628–121–78–70–02



S. W. Naw
Department of Chemistry, Myitkyina University
Myanmar

Sin W. Naw, Master of Science, Lecturer

CC95+FWM, Myitkyina

+959–440–00–71–12



E. Ullah
Department of Chemistry, Mississippi State University
United States

Emdad Ullah, Master of Science, PhD Student

310 President Cir, Mississippi, Mississippi State

+1–662–617–56–70



V. Jakhmola
Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University
India

Vikash Jakhmola, Professor, Professor

Chakrata Rd, Prem Nagar, Dehradun, Uttarakhand, 248007

+918–126–00–96–20



R. Zainul
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang
Indonesia

Rahadian Zainul, Professor in Chemistry, Professor

Jl. Prof. Dr. Hamka, Air Tawar Bar., Kec. Padang Utara, Kota Padang, Sumatera Barat

+628–126–138–53–85



References

1. Araki, Y., Hanaki, Y., Kita, M., Hayakawa, K., Irie, K., Nokura, Y. et al. (2021). Total synthesis and biological evaluation of oscillatoxins D, E, and F. Bioscience, Biotechnology and Biochemistry, 85(6), 1371–1382. https://doi.org/10.1093/bbb/zbab042

2. Leveridge, M., Chung, C. -W., Gross, J. W., Phelps, C. B., Green, D. (2018). Integration of lead discovery tactics and the evolution of the lead discovery toolbox. SLAS Discovery, 23(9), 881–897. https://doi.org/10.1177/2472555218778503

3. Rasul, A., Riaz, A., Sarfraz, I., Khan, S. G., Hussain, G., Zara, R. et al. (2022). Chapter in a book: Target identification approaches in drug discovery. Springer, Cham, 2022. https://doi.org/10.1007/978–3–030–95895–4_3

4. Open chemistry database at the National Institutes of Health (NIH). Retrieved from https://pubchem.ncbi.nlm.nih.gov/ Accessed January 15, 2023

5. Swiss Institute of Bioinformatics. Retrieved from http://www.swissadme.ch/index.php Accessed January 15, 2023

6. Royal Society of Chemistry. Retrieved from http://www.chemspider.com/Accessed January 15, 2023

7. The Swiss Target Prediction database. Retrieved from http://swisstargetprediction.ch/ Accessed January 25, 2023

8. The Anatomical Therapeutic Chemical (ATC) classification system. Retrieved from https://prediction.charite.de/ Accessed January 25, 2023

9. Protein-Protein Interaction Networks Functional Enrichment Analysis. Retrieved from http://string-db.org Accessed January 25, 2023

10. Network Data Integration, Analysis, and Visualization in a Box. Retrieved from https://cytoscape.org/ Accessed January 25, 2023

11. A Gene Annotation and Analysis Resource. Retrieved from https://metascape.org Accessed January 25, 2023

12. Database of medicinal substances with chemical, pharmacological and pharmaceutical information. Retrieved from https://go.drugbank.com/drugs Accessed January 25, 2023

13. Zhang, M., Jang, H., Nussinov, R. (2020). Structural features that distinguish inactive and active PI3K lipid kinases. Journal of Molecular Biology, 432(22), 5849–5859. https://doi.org/10.1016/j.jmb.2020.09.002

14. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, Article 33. https://doi.org/10.1186/1758–2946–3–33

15. Kumar, A., Zhang, K. Y. J. (2013). Investigation on the effect of key water molecules on docking performance in CSARdock exercise. Journal of Chemical Information and Modeling, 53(8), 1880–1892. https://doi.org/10.1021/ci400052w

16. Huang, N., Shoichet, B. K. (2008). Exploiting ordered waters in molecular docking. Journal of Medicinal Chemistry, 51(16), 4862–4865. https://doi.org/10.1021/jm8006239

17. Laskowski, R. A., Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u

18. Budama-Kilinc, Y., Gok, B., Kecel-Gunduz, S., Altuntas, E. (2022). Development of nanoformulation for hyperpigmentation disorders: Experimental evaluations, in vitro efficacy and in silico molecular docking studies. Arabian Journal of Chemistry, 15(12), Article 104362. https://doi.org/10.1016/j.arabjc.2022.104362

19. Wood, D. J., Korolchuk, S., Tatum, N. J., Wang, L. -Z., Endicott, J. A., Noble, M. E. M. et al. (2019). Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chemical Biology, 26(1), 121–130. https://doi.org/10.1016/j.chembiol.2018.10.015

20. Pantsar, T., Poso, A. (2018). Binding affinity via docking: Fact and fiction. Molecules, 23(8), Article 1899. https://doi.org/10.3390/molecules23081899

21. Zhang, M., Jang, H., Nussinov, R. (2020). PI3K inhibitors: Review and new strategies. Chemical Science, 11(23), 5855–5865. https://doi.org/10.1039/d0sc01676d

22. El-Khouly, O. A., Henen, M. A., El-Sayed, M. A.-A., El-Messery, S. M. (2022). Design, synthesis and computational study of new benzofuran hybrids as dual PI3K/VEGFR2 inhibitors targeting cancer. Scientific Reports, 12(1), Article 17104. https://doi.org/10.1038/s41598–022–21277–2

23. Deivanayagam, C. C. S., Carson, M., Thotakura, A., Narayana, S. V., Chodavarapu, R. S. (2000). Structure of FKBP12.6 in complex with rapamycin. Acta Crystallographica Section D: Biological Crystallography, 56(Part 3), 266–271. https://doi.org/10.1107/s0907444999016571

24. Zou, Z., Tao, T., Li, H., Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell and Bioscience, 10(1), Article 31. https://doi.org/10.1186/s13578–020–00396–1

25. Yunitasari, N., Raharjo, T. J., Swasono, R. T., Pranowo, H. D. (2022). Identification α-amylase inhibitors of Vernonia amygdalina leaves extract using metabolite profiling combined with molecular docking. Indonesian Journal of Chemistry, 22(2), 526–538. https://doi.org/10.22146/ijc.71499

26. Arcoleo, J. P., Weinstein, I. B. (1985). Activation of protein kinase C by tumor promoting phorbol esters, teleocidin and aplysiatoxin in the absence of added calcium. Cardnogenesis, 6(2), 213–217. https://doi.org/10.1093/carcin/6.2.213

27. Lin, A., Giuliano, C. J., Palladino, A., John, K. M., Abramowicz, C., Yuan, M. L. et al. (2019). Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 11(509), Article eaaw8412. https://doi.org/10.1126/scitranslmed.aaw8412

28. Yap, B. H. J., Crawford, S. A., Dagastine, R. R., Scales, P. J., Martin, G. J. O. (2016). Nitrogen deprivation of microalgae: Effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. Journal of Industrial Microbiology and Biotechnology, 43(12), 1671–1680. https://doi.org/10.1007/s10295–016–1848–1

29. Du, Z., Lovly, C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer, 17(1), Article 58. https://doi.org/10.1186/s12943–018–0782–4

30. Novikov, N. M., Zolotaryova, S. Y., Gautreau, A. M., Denisov, E. V. (2020). Mutational drivers of cancer cell migration and invasion. British Journal of Cancer, 124(1), 102–114. https://doi.org/10.1038/s41416–020–01149–0

31. Katayama, A., Miligy, I. M., Shiino, S., Toss, M. S., Eldib, K., Kurozumi, S. et al. (2021). Predictors of pathological complete response to neoadjuvant treatment and changes to post-neoadjuvant HER2 status in HER2-positive invasive breast cancer. Modern Pathology, 34(7), 1271–1281. https://doi.org/10.1038/s41379–021–00738–5

32. Klaunig, J. E. (2018). Oxidative stress and cancer. Current Pharmaceutical Design, 24(40), 4771–4778. https://doi.org/10.2174/1381612825666190215121712

33. Li, J., Zhong, L., Wang, F., Zhu, H. (2017). Dissecting the role of AMP-activated protein kinase in human diseases. Acta Pharmaceutica Sinica B, 7(3), 249–259. https://doi.org/10.1016/j.apsb.2016.12.003


Review

For citations:


Luthfiana D., Soleha M., Prasetiyo A., Kusuma W.A., Fatriani R., Nurfadhila L., Yunitasari N., Ahkam A.H., Wargasetia T.L., Irfandi R., Ansori A.N., Kharisma V.D., Naw S.W., Ullah E., Jakhmola V., Zainul R. Network pharmacology and molecular docking study to reveal the potential anticancer activity of Oscillatoxin D, E, and F marine cytotoxins. Food systems. 2023;6(3):365-389. https://doi.org/10.21323/2618-9771-2023-6-3-365-389

Views: 243


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)