Preview

Пищевые системы

Расширенный поиск

Структурные характеристики генома вируса лейкоза крупного рогатого скота: мини-обзор

https://doi.org/10.21323/2618-9771-2023-6-3-283-287

Аннотация

Энзоотический лейкоз крупного рогатого скота — это инфекционное заболевание с хроническим течением, вызываемое РНК-содержащим вирусом из рода Deltaretrovirus. Несмотря на внедрение различных программ по ликвидации лейкоза, заболевание остается широко распространенным на планете и продолжает наносить значительный экономический ущерб. Большинство инфицированных вирусом BLV животных остаются бессимптомными носителями вируса, что осложняет постановку диагноза и способствует распространению заболевания в стаде. Структура генома вируса BLV в целом типична для представителей ретровирусов. В его состав входят гены, кодирующие структурные белки, вирусные ферменты и регуляторные элементы, фланкированные с обеих сторон идентичными длинными концевыми повторами. Гены, кодирующие ферменты и структурные белки (gag, pro, pol и env), играют важнейшую роль в жизненном цикле вируса, оказывая влияние на его инфекционность и производство вирионов. Регуляторные гены tax и rex обеспечивают регуляцию вирусной транскрипции, экспорт транскриптов из ядра в цитоплазму и прогрессирование заболевания. При этом увеличение числа копий провирусной ДНК происходит в основном не за счёт функционирования обратной транскриптазы вируса, а посредством клонального размножения пораженных субпопуляций B-клеток, преимущественно CD5+ IgM+. Данная особенность обеспечивает повышенную генетическую стабильность вируса BLV. Эти свойства вирусного генома позволяют разрабатывать разнообразные ПЦР-тест системы, широкое внедрение которых позволяет выявлять носителей болезни на ранних стадиях, что должно способствовать эффективной реализации национальных программ искоренения лейкоза крупного рогатого скота.

Об авторе

О. Ю. Фоменко
Всероссийский научно-исследовательский институт молочной промышленности
Россия

Фоменко Олег Юрьевич — кандидат биологических наук, старший научный сотрудник, Центральная лаборатория микробиологии

115093, Москва, ул. Люсиновская, 35/7

Тел.: +7–904–211–01–75



Список литературы

1. Achachi, A., Florins, A., Gillet, N., Debacq, C., Urbain, P., Foutsop, G. M. et al. (2005). Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10309–10314. https://doi.org/10.1073/pnas.0504248102

2. Miller, J. M., Miller, L. D., Olson, C., Gillette, K. G. (1969). Virus-like particles in phytohemagglutinin-stimulated lymphocyte cultures with reference to bovine lymphosarcoma. Journal of the National Cancer Institute, 43(6), 1297–1305. https://doi.org/10.1093/jnci/43.6.1297

3. Kettmann, R., Portetelle, D., Mammerickx, M., Cleuter, Y., Dekegel, D., Galoux, M. et al. (1976). Bovine leukemia virus: An exogenous RNA oncogenic virus. Proceedings of the National Academy of Sciences of the United States of America, 73(4), 1014–1018. https://doi.org/10.1073/pnas.73.4.1014

4. Murakami, H., Yamada, T., Suzuki, M., Nakahara, Y., Suzuki, K., Sentsui, H. (2011). Bovine leukemia virus integration site selection in cattle that develop leukemia. Virus Research, 156(1–2), 107–112. https://doi.org/10.1016/j.virusres.2011.01.004

5. Hron, T., Elleder, D., Gifford, R. J. (2019). Deltaretroviruses have circulated since at least the Paleogene and infected a broad range of mammalian species. Retrovirology, 16, Article 33. https://doi.org/10.1186/s12977–019–0495–9

6. Aida, Y., Okada, K., Amanuma, H. (1993). Phenotype and ontogeny of cells carrying a tumor-associated antigen that is expressed on bovine leukemia virusinduced lymphosarcoma. Cancer Research, 53(2), 429–437.

7. Sagata, N., Yasunaga, T., Tsuzuku-Kawamura, J., Ohishi, K., Ogawa, Y., Ikawa, Y. (1985). Complete nucleotide sequence of the genome of bovine leukemia virus: Its evolutionary relationship to other retroviruses. Proceedings of the National Academy of Sciences of the United States of America, 82(3), 677–681. https://doi.org/10.1073/pnas.82.3.677

8. Polat, M., Takeshima, Sn., Aida, Y. (2017). Epidemiology and genetic diversity of bovine leukemia virus. Virology Journal, 14, Article 209. https://doi.org/10.1186/s12985–017–0876–4

9. Moratorio, G., Fischer, S., Bianchi, S., Tomé, L., Rama, G., Obal, G. et al. (2013). A detailed molecular analysis of complete Bovine Leukemia Virus genomes isolated from B-cell lymphosarcomas. Veterinary Research, 44, Article 19. https://doi.org/10.1186/1297–9716–44–19

10. Nguyên, T. L., de Walque, S., Veithen, E., Dekoninck, A., Martinelli, V., de Launoit, Y. et al. (2007). Transcriptional regulation of the bovine leukemia virus promoter by the cyclic AMP-response element modulator tau isoform. Journal of Biological Chemistry, 282(29), 20854–20867. https://doi.org/10.1074/jbc.M703060200

11. Calomme, C., Dekoninck, A., Nizet, S., Adam, E., Nguyên, T.L., Van Den Broeke, A. et al. (2004). Overlapping CRE and E box motifs in the enhancer sequences of the bovine leukemia virus 5’ long terminal repeat are critical for basal and acetylation-dependent transcriptional activity of the viral promoter: Implications for viral latency. Journal of Virology, 78(24), 13848–13864. https://doi.org/10.1128/JVI.78.24.13848–13864.2004

12. Xiao J., Buehring G. C. (1998). In vivo protein binding and functional analysis of cis-acting elements in the U3 region of the bovine leukemia virus long terminal repeat. Journal of Virology, 72(7), 5994–6003. https://doi.org/10.1128/JVI.72.7.5994–6003.1998

13. Dekoninck, A., Calomme, C., Nizet, S., de Launoit, Y., Burny, A., Ghysdael, J. et al. (2003). Identification and characterization of a PU.1/Spi-B binding site in the bovine leukemia virus long terminal repeat. Oncogene, 22(19), 2882–2896. https://doi.org/doi:10.1038/sj.onc.1206392

14. Derse, D. (1987). Bovine leukemia virus transcription is controlled by a virusencoded transacting factor and by CIS-acting response elements. Journal of Virology, 61(8), 2462–2471. https://doi.org/10.1128/jvi.61.8.2462–2471.1987

15. Maezawa, M., Fujii, Y., Akagami, M., Kawakami, J., Inokuma, H. (2023). Phylogenetic analysis based on whole genome sequence of bovine leukemia virus in cattle under 3 years old with enzootic bovine leukosis. PLOS ONE, 18(1), Article e0279756. https://doi.org/10.1371/journal.pone.0279756

16. Szynal, M., Cleuter, Y., Beskorwayne, T., Bagnis, C., Van Lint, C., Kerkhofs, P. et al. (2003). Disruption of B-cell homeostatic control mediated by the BLV-Tax oncoprotein: Association with the upregulation of Bcl-2 and signaling through NF-κB. Oncogene, 22, 4531–4542. https://doi.org/10.1038/sj.onc.1206546

17. Inoue, E., Matsumura, K., Soma, N., Hirasawa, S., Wakimoto, M., Arakaki, Y. et al. (2013). L233P mutation of the Tax protein strongly correlated with leukemogenicity of bovine leukemia virus. Veterinary Microbiology, 167(3–4), 364–371. https://doi.org/10.1016/j.vetmic.2013.09.026

18. Wang, H., Norris, K. M., Mansky, L. M. (2003). Involvement of the matrix and nucleocapsid domains of the bovine leukemia virus Gag polyprotein precursor in viral RNA packaging. Journal of Virology, 77(17), 9431–3438. https://doi.org/10.1128/jvi.77.17.9431–9438.2003

19. Sperka, T., Miklóssy, G., Tie, Y., Bagossi, P., Zahuczky, G., Boross, P. et al. (2007). Bovine leukemia virus protease: Сomparison with human T-lymphotropic virus and human immunodeficiency virus proteases. Journal of General Virology, 88(7), 2052–2063. https://doi.org/10.1099/vir.0.82704–0

20. Sebastián-Martín, A., Barrioluengo, V., Menéndez-Arias, L. (2018). Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Scientific Reports, 8, Article 627. https://doi.org/10.1038/s41598–017–18974–8

21. Mansky, L. M., Temin, H. M. (1994). Lower mutation rate of bovine leukemia virus relative to that of spleen necrosis virus. Journal of Virology, 68(1), 494–499. https://doi.org/10.1128/jvi.68.1.494–499.1994

22. Wattel, E., Vartanian, J. P., Pannetier, C., Wain-Hobson, S. (1995). Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. Journal of Virology, 69(5), 2863–2868. https://doi.org/10.1128/jvi.69.5.2863–2868.1995

23. Perach, M., Hizi, A. (1999). Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology, 259(1), 176– 189. https://doi.org/10.1006/viro.1999.9761

24. Lamb, D., Schüttelkopf, A. W., van Aalten, D. M., Brighty, D. W. (2011). Chargesurrounded pockets and electrostatic interactions with small ions modulate the activity of retroviral fusion proteins. PLOS Pathogens, 7(2), Article e1001268. https://doi.org/10.1371/journal.ppat.1001268

25. Wallin, M., Ekström, M., Garoff, H. (2004). Isomerization of the intersubunit disulphide-bond in Env controls retrovirus fusion. The EMBO Journal, 23(1), 54–65. https://doi.org/10.1038/sj.emboj.7600012

26. Bruck, C., Mathot, S., Portetelle, D., Berte, C., Franssen, J. D., Herion, P. et al. (1982). Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51. Virology, 122(2), 342–352. https://doi.org/10.1016/0042–6822(82)90234–3

27. Zarkik, S., Defrise-Quertain, F., Portetelle, D., Burny, A., Ruysschaert. J. M. (1997). Fusion of bovine leukemia virus with target cells monitored by R18 fluorescence and PCR assays. Journal of Virology, 71(1), 738–740. https://doi.org/10.1128/JVI.71.1.738–740.1997

28. Bai, L., Takeshima, S. N., Isogai, E., Kohara, J., Aida, Y. (2015). Novel CD8(+) cytotoxic T cell epitopes in bovine leukemia virus with cattle. Vaccine, 33(51), 7194–7202. https://doi.org/10.1016/j.vaccine.2015.10.128

29. De Brogniez, A., Mast, J., Willems, L. (2016). Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis. Viruses, 8(4), Article 88. https://doi.org/10.3390/v8040088

30. Barez, P. Y., de Brogniez, A., Carpentier, A., Gazon, H., Gillet, N., Gutiérrez, G. et al. (2015). Recent advances in BLV research. Viruses, 7(11), 6080–6088. https://doi.org/10.3390/v7112929

31. Durkin, K., Rosewick, N., Artesi, M., Hahaut, V., Griebel, P., Arsic, N. et al. (2016). Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology, 13(1), Article 33. https://doi.org/10.1186/s12977–016–0267–8

32. Pluta, A., Jaworski, J. P., Douville, R. N. (2020). Regulation of Expression and Latency in BLV and HTLV. Viruses, 12(10), Article 1079. https://doi.org/10.3390/v12101079

33. Arainga, M., Takeda, E., Aida, Y. (2012). Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics, 13, Article 121. https://doi.org/10.1186/1471–2164–13–121

34. Tajima, S., Aida, Y. (2005). Induction of expression of bovine leukemia virus (BLV) in blood taken from BLV-infected cows without removal of plasma. Microbes and Infection, 7(11–12), 1211–1216. https://doi.org/10.1016/j.micinf.2005.04.010

35. Inabe, K., Ikuta, K., Aida, Y. (1998). Transmission and propagation in cell culture of virus produced by cells transfected with an infectious molecular clone of bovine leukemia virus. Virology, 245(1), 53–64. https://doi.org/10.1006/viro.1998.9140

36. Derse, D. (1988). Trans-acting regulation of bovine leukemia virus mRNA processing. Journal of Virology, 62(4), 1115–1119. https://doi.org/10.1128/JVI.62.4.1115–1119.1988

37. Edwards, D., Fenizia, C., Gold, H., de Castro-Amarante, M. F., Buchmann, C., Pise-Masison, C.A. et al. (2011). Orf-I and orf-II-encoded proteins in HTLV-1 infection and persistence. Viruses, 3(6), 861–885. https://doi.org/10.3390/v3060861

38. Montero Machuca, N., Tórtora Pérez, J. L., González Méndez, A. S., García-Camacho, A. L., Marín Flamand, E., Ramírez Álvarez, H. (2022). Genetic analysis of the pX region of bovine leukemia virus genotype 1 in Holstein Friesian cattle with different stages of infection. Archives of Virology, 167, 45–56. https://doi.org/10.1007/s00705–021–05252–2

39. Lefèbvre, L., Ciminale, V., Vanderplasschen, A., D’Agostino, D., Burny, A., Willems, L. et al. (2002). Subcellular localization of the bovine leukemia virus R3 and G4 accessory proteins. Journal of Virology, 76(15), 7843–7854. https://doi.org/10.1128/jvi.76.15.7843–7854.2002

40. Murakami, H., Uchiyama, J., Nikaido, S., Sato, R., Sakaguchi, M., Tsukamoto, K. (2016). Inefficient viral replication of bovine leukemia virus induced by spontaneous deletion mutation in the G4 gene. Journal of General Virology, 97(10), 2753–2762. https://doi.org/10.1099/jgv.0.000583

41. Zyrianova, I. M., Koval’chuk, S. N. (2018). Bovine leukemia virus pre-miRNA genes’ polymorphism. RNA Biology, 15(12), 1440–1447. https://doi.org/10.1080/15476286.2018.1555406

42. Jimba, M., Takeshima, Sn., Murakami, H., Kohara, J., Kobayashi, N., Matsuhashi, T. et al. (2012). BLV–CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status. BMC Veterinary Research, 8, Article 167. https://doi.org/10.1186/1746–6148–8–167

43. Borjigin, L., Yoneyama, S., Saito, S., Polat, M., Inokuma, M., Shinozaki, Y. et al. (2021). A novel real time PCR assay for bovine leukemia virus detection using mixed probes and degenerate primers targeting novel BLV strains. Journal of Virological Methods, 297, Article 114264. https://doi.org/10.1016/j.jviromet.2021.114264

44. Corredor-Figueroa, A. P., Salas, S., Olaya-Galán, N. N., Quintero, J. S., Fajardo, Á., Soñora, M. et al. (2020). Prevalence and molecular epidemiology of bovine leukemia virus in Colombian cattle. Infection, Genetics and Evolution, 80, Article 104171. https://doi.org/10.1016/j.meegid.2020.104171

45. Dimitrov, P., Simeonov, K., Todorova, K., Ivanova, Z., Toshkova, R., Shikova, E. et al. (2012). Pathological features of experimental bovine leukaemia viral (BLV) infection in rats and rabbits. Bulletin of the Veterinary Institute in Pulawy, 56, 115–120. https://doi.org/10.2478/v10213–012–0021–5

46. Fechner, H., Kurg, A., Geue, L., Blankenstein, P., Mewes, G., Ebner. D. et al. (1996). Evaluation of Polymerase Chain Reaction (PCR) application in diagnosis of Bovine Leukaemia Virus (BLV) infection in naturally infected cattle. Zoonoses and Public Health, 43(1–10), 621–630. https://doi.org/10.1111/j.1439–0450.1996.tb00361.x

47. Choi, K. Y., Monke, D., Stott, J. L. (2002). Absence of bovine leukosis virus in semen of seropositive bulls. Journal of Veterinary Diagnostic Investigation, 14(5), 403–406. https://doi.org/10.1177/104063870201400507

48. Alvarez, I., Porta, N. G., Trono, K. (2019). Detection of Bovine Leukemia Virus RNA in blood samples of naturally infected dairy cattle. Veterinary Sciences, 6(3), Article 66. https://doi.org/10.3390/vetsci6030066

49. Klintevall, K., Ballagi-Pordány, A., Näslund, K., Belák, S. (1994). Bovine leukaemia virus: rapid detection of proviral DNA by nested PCR in blood and organs of experimentally infected calves. Veterinary Microbiology, 42(2–3), 191–204. https://doi.org/10.1016/0378–1135(94)90018–3

50. Uera, J. A., Lazaro, J. V., Mingala, C. (2012). Detection of Enzootic Bovine Leukosis in cattle using nested Polymerase Chain Reaction assay. Thai Journal of Veterinary Medicine, 42(3), 319–324. https://he01.tci-thaijo.org/index.php/tjvm/article/view/10988

51. Polat, M., Ohno, A., Takeshima, Sn., Kim, J., Kikuya, M., Matsumoto, Y. et al. (2015). Detection and molecular characterization of bovine leukemia virus in Philippine cattle. Archives of Virology, 160, 285–296. https://doi.org/10.1007/s00705–014–2280–3

52. D’Angelino, R. H. R., Pituco, E. M., Villalobos, E. M. C., Harakava, R., Gregori, F., Del Fava, C. (2013). Detection of Bovine Leukemia Virus in brains of cattle with a neurological syndrome: Pathological and molecular studies. Bio Med Research International, 2013, Article 425646. https://doi.org/10.1155/2013/425646

53. Villalobos-Cortés, A., Franco, S., González, R. G., Jaen, M. W. (2017). Nested polymerase chain reaction (nPCR) based diagnosis of bovine leukemia virus in Panama. African Journal of Biotechnology, 16, 528–535. https://doi.org/10.5897/AJB2016.15849

54. Nishimori, A., Konnai, S., Ikebuchi, R., Okagawa, T., Nakahara, A., Murata, S. et al. (2016). Direct polymerase chain reaction from blood and tissue samples for rapid diagnosis of bovine leukemia virus infection. The Journal of Veterinary Medical Science, 78(5), 791–796. https://doi.org/10.1292/jvms.15–0577

55. Takeshima, Sn., Watanuki, S., Ishizaki, H., Matoba, K., Aida, Y. (2016). Development of a direct blood-based PCR system to detect BLV provirus using CoCoMo primers. Archives of Virology, 161, 1539–1546. https://doi.org/10.1007/s00705–016–2806-y

56. El Daous, H., Mitoma, S., Elhanafy, E., Thi Nguyen, H., Thi Mai, N., Hara, A. et al. (2020). Establishment of a novel diagnostic test for Bovine Leukaemia virus infection using direct filter PCR. Transboundary and Emerging Diseases, 67(4), 1671–1676. https://doi.org/10.1111/tbed.13506

57. Wu, X., Notsu, K., Matsuura, Y., Mitoma, S., El Daous, H., Norimine, J. et al. (2023). Development of droplet digital PCR for quantification of bovine leukemia virus proviral load using unpurified genomic DNA. Journal of Virological Methods, 315, Article 114706. https://doi.org/10.1016/j.jviromet.2023.114706


Рецензия

Для цитирования:


Фоменко О.Ю. Структурные характеристики генома вируса лейкоза крупного рогатого скота: мини-обзор. Пищевые системы. 2023;6(3):283-287. https://doi.org/10.21323/2618-9771-2023-6-3-283-287

For citation:


Fomenko O.Yu. Structural characteristics of the bovine leukemia virus genome: A mini review. Food systems. 2023;6(3):283-287. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-3-283-287

Просмотров: 451


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)