Study of extraction parameters, quantitative yield of polysaccharides and antioxidant activity of psychrophilic microalgae and cyanobacteria
https://doi.org/10.21323/2618-9771-2023-6-2-202-210
Abstract
Exopolysaccharides and endopolysaccharides are the main components in the antioxidant complex of psychrophilic microalgae and cyanobacteria. The extraction of these compounds from the cells is really energy consuming, as well as it requires large doses of chemicals due to the resilience, recalcitrance, complexity and diversity of the cell wall in microalgae. The purpose of this article was to study the dependence of polysaccharides quantitative yield on the power of ultrasound treatment and duration of their extraction, as well as to determine the antioxidant activity of the antioxidant complex of psychrophilic microalgae and cyanobacteria. In order to find and confirm the antioxidant properties of the complexes obtained from the microscopic algae biomass, we used the method based on measuring the optical density (in a liquid nutrient medium), i. e. the method for determining the antioxidant activity of the samples under research by their ability to reduce the level of free radicals. As a result of the studies the rational conditions were found for the extraction of the antioxidant complex from the cell culture fluid, and from the cell-related psychrophilic microalgae and cyanobacteria Skeletonema pseudocostatum, Thalassiosira pseudonana, Fragilariopsis kerguelensis, Aphanizomenon gracile, and Anabaena cylindrica. For the exopolysaccharides extraction from the psychrophilic microalgae and cyanobacteria Skeletonema pseudocostatum, Thalassiosira pseudonana, Fragilariopsis kerguelensis, Aphanizomenon gracile and Anabaena cylindrica, the method of ethanol extraction with an extraction module of 1:2 and an extraction temperature of 5 °С was used. The ability of psychrophilic microalgae and cyanobacteria Skeletonema pseudocostatum, Thalassiosira pseudonana, Fragilariopsis kerguelensis, Aphanizomenon gracile and Anabaena cylindrica to produce an antioxidant complex was studied. It was found that this complex contains polysaccharides: endopolysaccharides and exopolysaccharides in particular. The ability of psychrophilic microalgae and cyanobacteria Skeletonema pseudocostatum, Thalassiosira pseudonana, Fragilariopsis kerguelensis, Aphanizomenon gracile, and Anabaena cylindrica to produce an antioxidant complex was proven by the presence of significant antioxidant activity of psychrophilic microalgae and cyanobacteria, determined and confirmed by the methods ABTS, DPPH, and FRAP. The psychrophilic microalga Skeletonema pseudocostatum possesses the highest antioxidant activity. The availability of antioxidant properties in psychrophilic microalgae and cyanobacteria opens up the prospects for their practical application.
About the Authors
S. A. SukhikhRussian Federation
Stanislav A. Sukhikh, Doctor of Technical Sciences., Docent, Head of Laboratory
14, A. Nevsky str., 236041, Kaliningrad, Russia
Тел.: +7–960–903–62–81
V. F. Dolganyuk
Russian Federation
Vyacheslav F. Dolganyuk, Candidate of Technical Sciences, Researcher, Institute of Living Systems
14, A. Nevsky str., 236041, Kaliningrad, Russia
Tel.: +7–961–707–24–53
O. E. Kremleva
Belarus
Olga E. Kremleva, Candidate of Agricultural Sciences, Docent, Docent, Department of Ecology
22, Ozheshko str., 230023, Grodno, Belarus
Tel.: +7–904–960–92–73
E. V. Ulrikh
Russian Federation
Elena V. Ulrikh, Doctor of Technical Sciences, Deputy Director of the Institute of Agroengineering and Food Systems for Scientific and International Activities
1, Prospekt Sovetskiy, 236022, Kaliningrad, Russia
Tel.: +7–904–960–94–96
E. V. Kashirskikh
Russian Federation
Egor V. Kashirskikh, Candidate of Technical Sciences, Researcher, Institute of Living Systems
14, A. Nevsky str., 236041, Kaliningrad, Russia
Tel.: +7–923–504–23–23
O. O. Babich
Russian Federation
Olga O. Babich, Doctor of Technical Sciences, Docent, Director of the Scientific and Educational Center
14, A. Nevsky str., 236041, Kaliningrad, Russia
Тел.: +7–906–922–09–92
References
1. Coulombier, N., Nicolau, E., Le Déan, L., Antheaume, C., Jauffrais, T., Lebouvier, N. (2020). Impact of light intensity on antioxidant activity of tropical microalgae. Marine Drugs, 18(2), Article 122. https://doi.org/10.3390/md18020122
2. Coulombier, N., Blanchier, P., Le Dean, L., Barthelemy, V., Lebouvier, N., Jauffrais, T. (2021). The effects of CO2-induced acidification on Tetraselmis biomass production, photophysiology and antioxidant activity: A comparison using batch and continuous culture. Journal of Biotechnology, 325, 312–324. https://doi.org/10.1016/j.jbiotec.2020.10.005
3. Coulombier, N., Nicolau, E., Le Déan, L., Barthelemy, V., Schreiber, N., Brun, P. et al. (2020). Effects of nitrogen availability on the antioxidant activity and carotenoid content of the microalgae Nephroselmis sp. Marine Drugs, 18(9), Article 453. https://doi.org/ 10.3390/md18090453
4. Oleinik, G., Dario, P. P., de Morais Gasperin, K., Benvegnú, D. M., Lima, F. O., Soares, L. C. et al. (2022). In vitro antioxidant extracts evaluation from the residue of the Hevea brasiliensis seed. Scientific Reports, 12, Article 480. https://doi.org/10.1038/s41598–021–04017-w
5. Gao, J., Lin, L., Sun, B., Zhao, M. (2017). A comparison study on polysaccharides extracted from Laminaria japonica using different methods: structural characterization and bile acid-binding capacity. Food and Function, 8(9), 3043–3052. https://doi.org/10.1039/C7FO00218A
6. Wang, M., Chen, S., Zhou, W., Yuan, W., Wang, D. (2020). Algal cell lysis by bacteria: a review and comparison to conventional methods. Algal Research, 46, Article 101794. https://doi.org/10.1016/j.algal.2020.101794
7. Gomes, T. A., Zanette, C. M., Spier, M. R. (2020). An overview of cell disruption methods for intracellular biomolecules recovery. Preparative Biochemistry and Biotechnology, 50(7), 635–654. https://doi.org/10.1080/10826068.2020.1728696
8. Wei, S., Li, Y., Zhan, J., Wang, S., Zhu, J. (2012). Tolerant mechanisms of Rorippa globosa (Turcz.) Thell. hyperaccumulating Cd explored from root morphology. Bioresource Technology, 118, 455–459. https://doi.org/10.1016/j.biortech.2012.05.049
9. Muylaert, K., Bastiaens, L., Vandamme, D., Gouveia, L. Harvesting of microalgae: Overview of process options and their strengths and drawbacks. Chapter in a book: Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End Products. Woodhead Publishing Series in Energy: Duxford, UK, 2017. https://doi.org/10.1016/B978–0–08–101023–5.00005–4
10. Lukyanov, V. A., Stifeev, A. I., Gorbunova, S. Yu. (2013). Science-based cultivation of microalgae. Bulletin of the Kursk State Agricultural Academy, 9, 55–57. (In Russian)
11. Zhou, Q., Feng, F., Yang, Y., Zhao, F., Du, R., Zhou, Z. et al. (2018). Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. Journal of Biological Macromolecules, 107(B), 2234–2241. https://doi.org/10.1016/j.ijbiomac.2017.10.098
12. Mu, P., Plummer, D. T. (2001). Introduction to practical biochemistry. Tata McGraw-Hill Education: New York, NY, USA, 2001.
13. Guo, Q., Ai, L., Cui, S. W. (2018). Polysaccharide Extraction and Fractionation. Chapter in a book: Methodology for Structural Analysis of Polysaccharides. Springer: Cham, Switzerland, 2018. https://doi.org/10.1007/978–3–319–96370–9_2
14. Zheng, Y., Yang, G., Zhao, Z., Guo, T., Shi, H., Zhou, Y. et al. (2016). Structural analysis of ginseng polysaccharides extracted by EDTA solution. RSC Advances, 6(4), 2724–2730. https://doi.org/10.1039/C5RA22751H
15. Liang, Z., Li, W., Yang, S., Du, P. (2010). Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge. Chemosphere, 81(5), 626–632. https://doi.org/10.1016/j.chemosphere.2010.03.043
16. Hegedus, A., Barbu-Tudoran, L., Druga, B., Coman, C., Nicoara, A., Nagy, T.S. et al. (2012). Desmodesmus communis (Chlorophyta) from Romanian freshwaters: coenobial morphology and molecular taxonomy based on the ITS2 of new isolates. Annals of the Romanian Society for Cell Biology, 17(1), 16–28.
17. Bobrov, Z., Tracton, I., Taunton, K., Mathews, M. (2008). Effectiveness of whole dried Dunaliella salina marine microalgae in the chelating and detoxification of toxic minerals and heavy metals. The Journal of Alternative and Complementary Medicine, 14, 8–9.
18. Boussiba, S. (2000). Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiologia Plantarum, 108(2), 111–117. https://doi.org/10.1034/j.1399–3054.2000.108002111.x
19. Cao, M., Kang, J., Gao, Y., Wang, X., Pan, X., Liu, P. (2020). Optimization of cultivation conditions for enhancing biomass, polysaccharide and protein yields of Chlorella sorokiniana by response surface methodology. Aquaculture Research, 51(6), 2456–2471. https://doi.org/10.1111/are.14589
20. Cardemil, L., Wolk, C. P. (1981). Polysaccharides from the envelopes of heterocysts and spores of the blue-green algae Anabaena variabilis and Cylindrospermum licheniforme. Journal of Phycology, 17(3), 234–240. https://doi.org/10.1111/j.1529–8817.1981.tb00845.x
21. Chakraborty, M., Miao, C., McDonald, A., Chen, S. (2012). Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel, 95, 63–70. https://doi.org/10.1016/j.fuel.2011.10.05
22. Chen, X., Song, L., Wang, H., Liu, S., Yu, H., Wang, X. et al. (2019). Partial characterization, the immune modulation and anticancer activities of sulfated polysaccharides from filamentous microalgae Tribonema sp. Molecules, 24(2), Article 322. https://doi.org/10.3390/molecules24020322
23. Chen, Y., Liu, X., Wu, L., Tong, A., Zhao, L., Liu, B. et al. (2018). Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster. Carbohydrate Polymers, 185, 120–126. https://doi.org/10.1016/j.carbpol.2017.12.077
24. Chen, Y. Lin, H., Li, Z., Mou, Q. (2015). The anti-allergic activity of polyphenol extracted from five marine algae. Journal of Ocean University of China, 14(4), 681–684. https://doi.org/10.1007/s11802–015–2601–5
25. Chen, Y.-X., Liu, X.-Y., Xiao, Z., Huang, Y.-F., Liu, B. (2016). Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. International Journal of Biological Macromolecules, 91, 505–509. https://doi.org/10.1016/j.ijbiomac.2016.05.086
26. Conte, M. V., Pore, R. S. (1973). Taxonomic implications of Prototheca and Chlorella cell wall polysaccharide characterization. Archiv für Mikrobiologie, 92(3), 227–233. https://doi.org/10.1007/BF00411203
27. Costa, J. A. V., Lucas, B. F., Alvarenga, A. G. P., Moreira, J. B., de Morais, M. G. (2021). Microalgae polysaccharides: An overview of production, characterization, and potential applications. Polysaccharides, 2(4), 759–772. https://doi.org/10.3390/polysaccharides2040046
28. de Macedo Dantas, D. M., de Oliveira, C. Y. B., Costa, R. M. P. B., Carneiroda- Cunha, M. D. G., Gálvez, A. O. et al. (2019). Evaluation of antioxidant and antibacterial capacity of green microalgae Scenedesmus subspicatus. Food Science and Technology International, 25(4), 318–326. https://doi.org/10.1177/1082013218825024
29. de Jesus, C. S., de Jesus Assis, D., Rodriguez, M. B., Filho, J. A. M., Costa, J. A. V., de Souza Ferreira, E. et al. (2019). Pilot-scale isolation and characterization of extracellular polymeric substances (EPS) from cellfree medium of Spirulina sp. LEB‑18 cultures under outdoor conditions International Journal of Biological Macromolecules, 124, 1106–1114. https://doi.org/10.1016/j.ijbiomac.2018.12.016
30. de Morais, M. G., da Silva Vaz, B., Greque de Morais, E. G., Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015, Article 835761. https://doi.org/10.1155/2015/835761
31. Deamici, K. M., de Morais, M. G., Santos, L. O., Muylaert, K., Gardarin, C., Costa, J. A. V. et al. (2021). Static magnetic fields effects on polysaccharides production by different microalgae strains. Applied Sciences, 11(11), Article 5299. https://doi.org/10.3390/app11115299
32. Decamp, A., Michelo, O., Rabbat C., Laroche, C., Grizeau, D., Pruvost, J. et al. (2021). A new, quick, and simple protocol to evaluate microalgae polysaccharide composition. Marine Drugs, 19(2), Article 101. https://doi.org/10.3390/md19020101
Review
For citations:
Sukhikh S.A., Dolganyuk V.F., Kremleva O.E., Ulrikh E.V., Kashirskikh E.V., Babich O.O. Study of extraction parameters, quantitative yield of polysaccharides and antioxidant activity of psychrophilic microalgae and cyanobacteria. Food systems. 2023;6(2):202-210. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-2-202-210