Biologically active substances of elder: Properties, methods of extraction and preservation
https://doi.org/10.21323/2618-9771-2023-6-1-80-94
Abstract
Anthocyanins and polyphenols are the main biologically active substances in elderberry. Extraction methods exert a significant effect on the extraction effectiveness, bioavailability and preservation of biologically active compounds. The aim of this work was a review of the published results of scientific studies of elderberry and products of its processing, their effect on the body, as well as examination of methods for extraction and encapsulation of biologically active substances of elderberry. The review includes papers in English and Russian. A search for foreign literature in English on this theme was carried out in the bibliographic databases Google Scholar, Scopus, Web of Science, Elsevier, ResearchGate. To select scientific papers in Russian, a search was done in the scientific electronic library eLIBRARY.RU by keywords. The review of the scientific publications shows that the results of numerous studies confirm the high antioxidant activity of elderberry (Sambucus nigra L.), as well as wild elderberry (Sambucus ebulus), growing on the territory of the Belarus Republic and in other countries of Europe, Asia, North Africa and North America. This plant is applied in the traditional medicine and is used in the food industry as raw materials for creation of prophylactic and functional products due to the presence in the chemical composition of elderberry (Sambucus nigra L.) of bioactive flavonoids such as quercetin, kempherol and rutin, and other phenolic compounds. Bioactive compounds of elderberry possess several unique biological and pharmacological properties including the antioxidant, anti-tumor, anti-depressive, anti-diabetic, antiviral and antibacterial activities. To extract bioactive substances from elderberry, traditional extraction methods are used, such as maceration and Soxhlet extraction, as well as modern promising “green” technologies (for example, supercritical fluids, pulsed electric field, emulsion liquid extraction, microwave-assisted and ultrasound-assisted extraction). To preserve and protect biologically active substances in elderberry, encapsulation methods that are most effective are employed. The materials of this paper can be used in future studies on optimization of extraction processes to increase the nutritional value and antioxidant activity of new functional foods, food additives and products of pharmaceutical industry.
About the Authors
L. Ch. BurakBelarus
Leonid Ch. Burak, Candidate of Technical Sciences, Director
19, Sharangovich str., Minsk, 220018
Tel.: +37517–379–51–61
A. N. Sapach
Belarus
Alexander N. Sapach, Chemist
19, Sharangovich str., Minsk, 220018
Tel.: +37517–379–51–61
References
1. Waźbińska, J. (2002). Sambucus for growers. Szkółkarstwo, 6, 29–30. (In Polish)
2. Vujanović, M., Majkić, T., Zengin, G., Beara, I., Cvetanović, A., Mahomoodally, F. M. et al. (2019). Advantages of contemporary extraction techniques for the extraction of bioactive constituents from black elderberry (Sambucus nigra L.) flowers. Industrial Crops and Products, 136, 93–101. https://doi.org/10.1016/j.indcrop.2019.04.058
3. Gomez Mattson, M. L., Corfield, R., Bajda, L., Pérez, O.E., Schebor, C., Salvatori, D. (2021). Potential bioactive ingredient from elderberry fruit: Process optimization for a maximum phenolic recovery, physicochemical characterization, and bioaccesibility. Journal of Berry Research, 11(1), 51–68. https //doi.org/10.3233/JBR‑200629
4. Młynarczyk, K., Walkowiak-Tomczak, D., Łysiak, G.P. (2018). Bioactive properties of Sambucus nigra L. As a functional ingredient for food and pharmaceutical industry. Journal of Functional Foods, 40, 377–390. https://doi.org/10.1016/j.jff.2017.11.025
5. Młynarczyk, K., Walkowiak-Tomczak, D., Staniek, H., Kidoń, M., Łysiak, G.P. (2020). The Content of selected minerals, bioactive compounds, and the antioxidant properties of the flowers and fruit of selected cultivars and wildly growing plants of Sambucus nigra L. Molecules, 25, Article 876. https://doi.org/10.3390/molecules25040876
6. Burak, L. Ch. (2022). Use of elder (Sambucus nigra l.) in the food industry: state and further prospects. Over-view. Khimija Rastitel’nogo Syr’ja, 3, 49–69. https://doi.org/10.14258/jcprm.20220310937 (In Russian)
7. Burak, L. Ch., Zavaley, A.P. (2021). Technology of production and quality assessment of direct-squeezed juice and concentrated elderberry growing in the Republic of Belarus. Food Industry, 11, 83–87. https://doi.org/10.52653/PPI.2021.11.11.001 (In Russian)
8. Abdel-Moneim, A.-M. E., Shehata, A.M., Alzahrani, S.O., Shafi, M.E., Mesalam, N.M., Taha, A.E. et al. (2020). The role of polyphenols in poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 104(6), 1851–1866. https://doi.org/10.1111/jpn.13455
9. Garavand, F., Madadlou, A., Moini, S. (2017). Determination of phenolic profile and antioxidant activity of pistachio hull using high-performance liquid chromatography-diode array detectorelectro-spray ionization — mass spectrometry as affected by ultrasound and microwave. International Journal of Food Properties, 20(1), 19–29. https://doi.org/10.1080/10942912.2015.1099045
10. Garavand, F., Rahaee, S., Vahedikia, N., Jafari, S.M. (2019). Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science and Technology, 89, 26–44. https://doi.org/10.1016/j.tifs.2019.05.005
11. Sobieralska, M., Kurek, M.A. (2019). Beta-glucan as wall material in encapsulation of elderberry (Sambucus nigra) extract. Plant Foods for Human Nutrition, 74(3), 334–341. https://doi.org/10.1007/s11130–019–00741-x
12. Paz, R., Fredes, C. (2015). The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules, 20(4), 5875–5888. https://doi.org/10.3390/molecules20045875
13. Moghaddam, M. H., Bayat, A.-H., Eskandari, N., Abdollahifar, M.-A., Fotouhi, F., Forouzannia, A. et al. (2021). Elderberry diet ameliorates motor function and prevents oxidative stress-induced cell death in rat models of Huntington disease. Brain Research, 1762, Article 147444. https://doi.org/10.1016/j.brainres.2021.147444
14. Mesalam, N.M., Aldhumri, S.A., Gabr, S.A., Ibrahim, M.A., Al-Mokaddem, A.K., Abdel-Moneim, A.-M.E. (2021). Putative abrogation impacts of Ajwa seeds on oxidative damage, liver dysfunction and associated complications in rats exposed to carbon tetrachloride. Molecular Biology Reports, 48(6), 5305–5318. https://doi.org/10.1007/s11033–021–06544–1
15. Vujanovíc, M., Majkíc, T., Zengin, G., Beara, I., Tomovíc, V., Šojić, B. et al. (2020). Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Advances, 10, 44805–44814. https://doi.org/10.1039/d0ra09129d
16. Senica, M., Stampar, F., Veberic, R., Mikulic-Petkovsek, M. (2017). The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. Journal of the Science of Food and Agriculture, 97(8), 2623–2632. https://doi.org/10.1002/jsfa.8085
17. Aliakbarian, B., Paini, M., Casazza, A.A., Perego, P. (2015). Effect of encapsulating agent on physical-chemical characteristics of olive pomace polyphenols-rich extracts. Chemical Engineering Transactions, 43, 97– 102. https://doi.org/10.3303/cet1543017
18. Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A. et al. (2015). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4), 452– 490. https://doi.org/10.1007/s12393–014–9106–7
19. Bakowska-Barczak, A. M., Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309. https://doi.org/10.1016/j.indcrop.2010.10.002
20. Aguiar, J., Estevinho, B. N., Santos, L. (2016). Microencapsulation of natural antioxidants for food application — The specific case of coffee antioxidants — A review. Trends in Food Science and Technology, 58, 21–39. https://doi.org/10.1016/j.tifs.2016.10.012
21. Wahab, N. A., Rahman, R.A, Ismail, A., Mustafa, S., Hashim, P. (2014). Assessment of antioxidant capacity, anti-collagenase and anti-elastase assays of Malaysian unfermented cocoa bean for cosmetic application. Natural Products Chemistry and Research, 2(3), Article 1000132. https://doi.org/10.4172/2329–6836.1000132
22. Ghimeray, A. K., Jung, U., Lee, H., Kim, Y., Ryu, E., Chang, M. (2015). In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract. Clinical, Cosmetic and Investigational Dermatology, 8, 389–396. https://doi.org/10.2147/CCID.S80906
23. Perše, M. (2013). Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? BioMed Research International, 2013, Article 725710. https://doi.org/10.1155/2013/725710
24. Olejnik, A., Olkowicz, M., Kowalska, K., Rychlik, J., Dembczyński, R., Myszka, K. et al. (2016). Gastrointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food Chemistry, 197(Part A), 648–657. https://doi.org/10.1016/j.foodchem.2015.11.017
25. Sidor, A., Gramza-Michałowska, A. (2015). Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food–a review. Journal of Functional Foods, 18(Part B), 941–958. https://doi.org/10.1016/j.jff.2014.07.012
26. Hidalgo, M., Oruna-Concha, M.J., Kolida, S., Walton, G.E., Kallithraka, S., Jeremy P. E. Spencer, J.P.E. et al. (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60(15), 3882–3890. https://doi.org/10.1021/jf3002153
27. Lila, M. A., Ribnicky, D.M., Rojo, L.E., Rojas-Silva, P., Oren, A., Havenaar, R., Janle, E.M. et al. (2012). Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenolics. Journal of Agricultural and Food Chemistry, 60(23), 5763–5771. https://doi.org/10.1021/jf203526h
28. Olejnik A., Kowalska, K., Olkowicz, M., Rychlik, J., Juzwa, W., Myszka, K. et al. (2015). Anti-inflammatory effects of gastrointestinal digested Sambucus nigra L. fruit extract analysed in co-cultured intestinal epithelial cells and lipopolysaccharide-stimulated macrophages. Journal of Functional Foods, 19(Part A), 649–660. https://doi.org/10.1016/j.jff.2015.09.064
29. Frøkiær, H., Henningsen, L., Metzdorff, B.S., Weiss, G., Roller, M., Flanagan, J. et al. (2012). Astragalus root and elderberry fruit extracts enhance the IFN‑β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PLoS One, 7(10), Article e47878. https://doi.org/10.1371/journal.pone.0047878
30. Pliszka, B., Wazbinska, J., Puczel, U., Huszcza-Ciołkowska, G. (2005). Biologically active polyphenolic compounds in elderberries of different cultivated varieties and wild-growing forms. Zeszyty Problemowe Postępów Nauk Rolniczych, 507(2), 443–449. (In Polish)
31. Przybylska-Balcerek, A., Szablewski, T., Szwajkowska-Michałek, L., Świerk, D., Cegielska-Radziejewska, R., Krejpcio, Z. et al. (2021). Sambucus nigra extracts — Natural antioxidants and antimicrobial compounds. Molecules, 26(10), Article 2910. https://doi.org/10.3390/molecules26102910
32. Boroduske, A., Jekabsons, K., Riekstina, U., Muceniece, R., Rostoks, N., Nakurte, I. (2021). Wild Sambucus nigra L. from north-east edge of the species range: A valuable germplasm with inhibitory capacity against SARS-CoV2 S‑protein RBD and hACE2 binding in vitro. Industrial Crops and Products, 165, Article 113438. https://doi.org/10.1016/j.indcrop.2021.113438
33. Gleńsk, M., Gliński, J.A., Włodarczyk, M., Stefanowicz, P. (2014). Determination of ursolic and oleanolic acid in Sambuci fructus. Chemistry and Biodiversity, 11(12), 1939–1944. https://doi.org/10.1002/cbdv.201400118
34. Caroline, H., Mccollum, G.A., Nelson, D., Ballard, L.M., Millar, C., Goldsmith, C. et al. (2010). Antibacterial activity of elder (Sambucus nigra L.) flower or berry against hospital pathogens. Journal of Medicinal Plants Research, 4(17), 1805–1809. https://doi.org/10.5897/JMPR10.147
35. Chatterjee, A., Yasmin, T., Bagchi, D., Stohs, S.J. (2004). Inhibition of Helicobacter pylori in vitro by various berry extracts, with enhanced susceptibility to clarithromycin. Molecular and Cellular Biochemistry, 265(1–2), 19–26. https://doi.org/10.1023/B:MCBI.0000044310.92444.ec
36. Krawitz, C., Mraheil, M.A., Stein, M., Imirzalioglu, C., Domann, E., Pleschka, S. et al. (2011). Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complementary and Alternative Medicine, 11(1), Article 16. https://doi.org/10.1186/1472–6882–11–16
37. Chen, C., Zuckerman, D.M., Susanna Brantley, Michka Sharpe, Kevin Childress, Egbert Hoiczyk, et al. (2014). Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Veterinary Research, 10(1), Article 24. https://doi.org/10.1186/1746–6148–10–24
38. Roschek, Jr. B., Fink, R.C., McMichael, M.D., Li, D., Alberte, R.S. (2009). Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry, 70(10), 1255–1261. https://doi.org/10.1016/j.phytochem.2009.06.003
39. Hawkins, J., Baker, C., Cherry, L., Dunne, E. (2019). Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complementary Therapies in Medicine, 42, 361–365. https://doi.org/10.1016/j.ctim.2018.12.004
40. Tiralongo, E., Wee, S. S., Lea, R. A. (2016). Elderberry supplementation reduces cold duration and symptoms in air-travellers: A randomized, double-blind placebo-controlled clinical trial. Nutrients, 8(4), Article 182. https://doi.org/10.3390/nu8040182
41. Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M. et al. (1995). Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. The Journal of Alternative and Complementary Medicine, 1(4), 361–369. https://doi.org/10.1089/acm.1995.1.361
42. Kinoshita, E., Hayashi, K., Katayama, H., Hayashi, T., Obata, A. (2012). Anti-influenza virus effects of elderberry juice and its fractions. Bioscience, Biotechnology, and Biochemistry, 76(9), 1633–1639. https://doi.org/10.1271/bbb.120112
43. Hidari, K. I. P. J., Abe, T., Suzuki, T. (2013). Crabohydrate — related inhibitors of dengue virus entry. Viruses, 5(2), 605–618. https://doi.org/10.3390/v5020605
44. McCutcheon, A. R., Roberts, T.E., Gibbons, E., Ellis, S.M., Babiuk, L.A., Hancock, R.E. et al. (1995). Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology, 49(2), 101–110. https://doi.org/10.1016/0378–8741(95)90037–3
45. Van der Meer, F., de Haan, C.A.M., Schuurman, N.M.P., Haijema, B.J., Verheije, M.H., Bosch, B.J. et al. (2007). The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. Journal of Antimicrobial Chemotherapy, 60(4), 741–749. https://doi.org/10.1093/jac/dkm301
46. Graham, D. R. M., Chertova, E., Hilburn, J.M., Arthur, L.O., Hildreth, J.E.K. (2003). Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. Journal of Virology, 77(15), 8237–8248. https://doi.org/10.1128/jvi.77.15.8237–8248.2003
47. Bartak, M., Lange, A., Słońska, A., Cymerys, J. (2020). Antiviral and healing potential of Sambucus nigra extracts. Revista Bionatura, 5(3), 1264–1270. http://dx.doi.org/10.21931/RB/2020.05.03.18
48. Rechenchoski, D. Z., Faccin-Galhardi, L.C., Linhares, R.E.C., Nozawa, C. (2017). Herpesvirus: an underestimated virus. Folia Microbiologica (Praha), 62(2), 151–156. https://doi.org/10.1007/s12223–016–0482–7
49. Harnett, J., Oakes, K., Carè, J., Leach, M., Brown, D., Cramer, H. et al. (2020). The effects of Sambucus nigra berry on acute respiratory viral infections: A rapid review of clinical studies. Advances in Integrative Medicine, 7(4), 240–246. https://doi.org/10.1016/j.aimed.2020.08.001
50. Kronbichler, A., Effenberger, M., Eisenhut, M., Lee, K.H., Shin, J.I. (2020). Seven recommendations to rescue the patients and reduce the mortality from COVID‑19 infection: An immunological point of view. Autoimmunity Reviews, 19(7), Article 102570. https://doi.org/10.1016/j.autrev.2020.102570
51. Silveira, D., Prieto-Garcia, J.M., Boylan, F., Estrada, O., Fonseca-Bazzo, Y.M., Jamal, C.M. et al. (2020). COVID‑19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Frontiers in Pharmacology, 11, Article 581840. 1479. https://doi.org/10.3389/fphar.2020.581840
52. Ho, G. T. T., Kase, E.T., Wangensteen, H., Barsett, H. (2017). Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry, 65(13), 2677–2685. https://doi.org/10.1021/acs.jafc.6b05582
53. Manna, P., Jain, S. K. (2015). Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metabolic Syndrome and Related Disorders, 13(10), 423–444. https://doi.org/10.1089/met.2015.0095
54. Matsuda, M., Shimomura, I. (2013). Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obesity Research and Clinical Practice, 7(5), e330-e341. https://doi.org/10.1016/j.orcp.2013.05.004
55. Zielińska-Wasielica, J., Olejnik, A., Kowalska, K., Olkowicz, M., Dembczyński, R. (2019). Elderberry (Sambucus nigra L.) fruit extract alleviates oxidative stress, insulin resistance, and inflammation in hypertrophied 3T3-L1 adipocytes and activated RAW 264.7 macrophages. Foods, 8(8), Article 326. https://doi.org/10.3390/foods8080326
56. Farrell, N. J., Norris, G.H., Ryan, J., Porter, C.M., Jiang, C., Blesso, C.N. (2015). Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. British Journal of Nutrition, 114(8), 1123–1131. https://doi.org/10.1017/S0007114515002962
57. Salvador, Â. C., Król, E., Lemos, V.C., Santos, S.A.O., Bento, F.P.M.S., Costa, C.P., Almeida, A. et al. (2016). Effect of elderberry (Sambucus nigra L.) extract supplementation in STZ‑induced diabetic rats fed with a high-fat diet. International Journal of Molecular Sciences, 18(1), Article 13. https://doi.org/10.3390/ijms18010013
58. Farrell, N., Norris, G., Lee, S.G., Chun, O.K., Blesso, C.N. (2015). Anthocyanin-rich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice. Food and Function, 6(4), 1278–1287. https://doi.org/10.1039/c4fo01036a
59. Opris, R., Tatomir, C., Olteanu, D., Moldovan, R., Moldovan, B., David, L. et al. (2017). The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids and Surfaces B: Biointerfaces, 150, 192–200. https://doi.org/10.1016/j.colsurfb.2016.11.033
60. Karthick, V., Kumar, V.G., Dhas, T.S., Singaravelu, G., Sadiq, A.M., Govindaraju, K. (2014). Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats — an in vivo approach. Colloids and Surfaces B: Biointerfaces, 122, 505–511. https://doi.org/10.1016/j.colsurfb.2014.07.022
61. Badescu, L., Badulescu, O., Badescu, M., Ciocoiu, M. (2012). Mechanism by Sambucus nigra extract improves bone mineral density in experimental diabetes. Evidence-based Complementary and Alternative Medicine, 2012, Article 848269. https://doi.org/10.1155/2012/848269
62. Cutrim, C. S., de Barrosa, R.F., da Costa, P.M., Franco, R.M., Conte-Junior, C.A., Cortez, M.A.S. (2016). Survival of Escherichia coli O157: H7 during manufacture and storage of traditional and low lactose yogurt. LWT, 70, 178–184. https://doi.org/10.1016/j.lwt.2016.02.047
63. Mattila, P., Kumpulainen, J. (2002). Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry, 50 (13), 3660–3667. https://doi.org/10.1021/jf020028p
64. Stanković, M., Maksimović, S., Tadić, V., Arsić, I. (2018). The oil content of wild fruits from different plant species obtained by conventional Soxhlet extraction technique. Acta Facultatis Medicae Naissensis, 35(3), 193–199. https://doi.org/10.2478/afmnai‑2018–0021
65. Kowalska, G., Wyrostek, J., Kowalski, R., Pankiewicz, U. (2021). Evaluation of glycerol usage for the extraction of anthocyanins from black chokeberry and elderberry fruit. Journal of Applied Research on Medicinal and Aromatic Plants, 22, Article 100296. https://doi.org/10.1016/j.jarmap.2021.100296
66. Gullón, B., Lú-Chau, T.A., Moreira, M.T., Lema, J.M., Eibes, G. (2017). Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science and Technology, 67, 220–235. https://doi.org/10.1016/j.tifs.2017.07.008
67. Suwal, S., Marciniak, A. (2018). Technologies for the extraction, separation and purification of polyphenols — A Review. Nepal Journal of Biotechnology, 6(1), 74–91. https://doi.org/10.3126/njb.v6i1.22341
68. Domínguez, R., Zhang, L., Rocchetti, G., Lucini, L., Pateiro, M., Munekata, P.E.S. et al. (2020). Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chemistry, 330, Article 127266. https://doi.org/10.1016/j.foodchem.2020.127266
69. Salvador, Â. C., Rocha, S.M., Silvestre, A.J.D. (2015). Lipophilic phytochemicals from elderberries (Sambucus nigra L.): Influence of ripening, cultivar and season. Industrial Crops and Products, 71, 15–23. https://doi.org/10.1016/j.indcrop.2015.03.082
70. El Asbahani, A., Miladi, K., Badri, W., Sala, M., Addi, E.H.A., Casabianca, H. et al. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483(1–2), 220–43. https://doi.org/10.1016/j.ijpharm.2014.12.069
71. Ağalar, H. G., Demirci, B., Demirci, F., Kırımer, N. (2017). The volatile compounds of the elderflowers extract and the essential oil. Records of Natural Products, 11(5), 491–496. http://doi.org/10.25135/rnp.63.16.08.058
72. Ali Redha, A., Siddiqui, S.A., Ibrahim, S.A. (2021). Advanced extraction techniques for Berberis species phytochemicals: A review. International Journal of Food Science and Technology, 56(11), 5485–5496. https://doi.org/10.1111/ijfs.15315
73. Belwal, T., Bhatt, I.D., Rawal, R.S., Pande, V. (2017). Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves. Industrial Crops and Products, 95, 393–403. https://doi.org/10.1016/j.indcrop.2016.10.049
74. Mota, A. H., Andrade, J.M., Ntungwe, E.N., Pereira, P., Cebola, M.J., Bernardo-Gil, M.G. et al. (2020). Green extraction of Sambucus nigra L. for potential application in skin nanocarriers. Green Materials, 8(4), 181–193. https://doi.org/10.1680/jgrma.18.00074
75. Wen, L., Zhang, Z., Sun, D.-W., Sivagnanam, S.P., Tiwari, B.K. (2020). Combination of emerging technologies for the extraction of bioactive compounds. Critical Reviews in Food Science and Nutrition, 60(11), 1826–1841. https://doi.org/10.1080/10408398.2019.1602823
76. Rodríguez Madrera, R., Suárez Valles, B. (2021). Analysis of cyanogenic compounds derived from mandelonitrile by ultrasound-assisted extraction and high-performance liquid chromatography in Rosaceae and Sambucus families. Molecules, 26(24), Article 7563. https://doi.org/10.3390/molecules26247563
77. Zhu, Z., Chen, Z., Zhou, Q., Sun, D.-W., Chen, H., Zhao, Y. et al. (2018). Freezing efficiency and quality attributes as affected by voids in plant tissues during ultrasound-assisted immersion freezing. Food and Bioprocess Technology, 11(9), 1615–1626. https://doi.org/10.1007/s11947–018–2103–8
78. Zhu, Z., Sun, D.-W., Zhang, Z., Li, Y., Cheng, L. (2018). Effects of micronano bubbles on the nucleation and crystal growth of sucrose and maltodextrin solutions during ultrasound-assisted freezing process. LWT, 92, 404–411. https://doi.org/10.1016/j.lwt.2018.02.053
79. Kitrytė, V., Povilaitis, D., Kraujalienė, V., Šulniūtė, V., Pukalskas, A., Venskutonis, P.R. (2017). Fractionation of sea buckthorn pomace and seeds into valuable components by using high pressure and enzyme-assisted extraction methods. LWT — Food Science and Technology, 85(Part B), 534–538. https://doi.org/10.1016/j.lwt.2017.02.041
80. Kitrytė, V., Laurinavičienė, A., Syrpas, M., Pukalskas, A., Venskutonis, P.R. (2020). Modeling and optimization of supercritical carbon dioxide extraction for isolation of valuable lipophilic constituents from elderberry (Sambucus nigra L.) pomace. Journal of CO2 Utilization, 35, 225–235. https://doi.org/10.1016/j.jcou.2019.09.020
81. Nadar, S. S., Rao, P., Rathod, V.K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309–330. https://doi.org/10.1016/j.foodres.2018.03.006
82. Flores, E. (2017). Antioxidant extraction from elderberries (Sambucus nigra L. Subsp. peruviana) with ultrasound, microwave, enzymes, and maceration to obtain functional juices Informacion Tecnologica, 28(1), 121–132. http://doi.org/10.4067/S0718–07642017000100012 (In Spanish)
83. Tamkutė, L., Liepuoniūtė, R., Pukalskienė, M., Venskutonis, P.R. (2020). Recovery of valuable lipophilic and polyphenolic fractions from cranberry pomace by consecutive supercritical CO2 and pressurized liquid extraction. The Journal of Supercritical Fluids, 159, Article 104755. https://doi.org/10.1016/j.supflu.2020.104755
84. Carvalho, I. T., Estevinho, B.N., Santos, L. (2016). Application of microencapsulated essential oils in cosmetic and personal healthcare products — a review. International Journal of Cosmetic Science, 3(2), 109–119. https://doi.org/10.1111/ics.12232
85. Estevinho, B. N., Carlan, I., Blaga, A., Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technology, 289, 71–78. https://doi.org/10.1016/j.powtec.2015.11.019
86. Gonçalves, A., Estevinho, B.N., Rocha, F. (2016). Microencapsulation of vitamin A: A review. Trends in Food Science and Technology, 51, 76–87. https://doi.org/10.1016/j.tifs.2016.03.001
87. Comunian, T. A., Ravanfar, R., Alcaine, S.D., Abbaspourrad, A. (2018). Water-in-oil-in-water emulsion obtained by glass microfluidic device for protection and heat-triggered release of natural pigments. Food Research International, 10, 945–951. https://doi.org/10.1016/j.foodres.2018.02.008
88. Kanha, N., Regenstein, J.M., Surawang, S., Pitchakarn, P., Laokuldilok, T. (2021). Properties and kinetics of the in vitro release of anthocyaninrich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Food Chemistry, 340, Article 127950. https://doi.org/10.1016/j.foodchem.2020.127950
89. Casati, C. B., Baeza, R., Sánchez, V. (2019). Physicochemical properties and bioactive compounds content in encapsulated freeze-dried powders obtained from blueberry, elderberry, blackcurrant and maqui berry. Journal of Berry Research, 9(3), 431–447. https://doi.org/10.3233/JBR‑190409
Review
For citations:
Burak L.Ch., Sapach A.N. Biologically active substances of elder: Properties, methods of extraction and preservation. Food systems. 2023;6(1):80-94. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-1-80-94