Preview

Food systems

Advanced search

Study of morphological features and growth parameters of psychrophilic microalgae and cyanobacteria

https://doi.org/10.21323/2618-9771-2022-5-4-289-297

Abstract

Recently, a question of producing a complex of biologically active substances from microalgae has aroused widespread interest. It is known that microalgae are able to produce a significant amount of exopolysaccharides. The aim of this work was to study morphological features and growth parameters of psychrophilic microalgae and cyanobacteria for the subsequent production of exopolysaccharides. The morphology of microalgae was observed using a binocular microscope. Growth parameters were studied by spectrophotometry; parameters of the culture medium were determined using a pH-meter. Exponential dependency graphs that show the dynamics and expected growth rate of microalgae were built. A rate of growth and polysaccharide biosynthesis in microalgae was determined upon changing the light intensity from 50 to130 mmol/m2/s. The highest level of cell counts in the logarithmic growth phase was up to 0.8 for Scenedesmus obtusiusculus Chod IPPAS S-329. A level of cells also varied in the deceleration phase from 0.25 for Ankistrodesmus acicularis Korsch IPPAS А-218 to 1.8 for Scenedesmus obtusiusculus Chod IPPAS S-329. Microalgae showed a high level of biomass accumulation under alkalophylic conditions. Eukaryotic algae actively photosynthesized at a pH of more than 8.0 and a temperature of 30 °C.

The maximum activity at the level of pH 3.0/3.2 in the lag phase was 100% in C-1509 Nannochloris sp. Naumann. Microalga C-1509 Nannochloris sp. Naumann showed a high level of biomass accumulation under alkalophylic conditions; it photosynthesized at a pH of more than 8.0 and a temperature of 30 °C. It has been proved that neutrophiles can grow at pH lower than 3.0; this corresponds to the results of the experiments with the collection strains of microalgae with biomass productivity of 27.3%. At the alkaline pH values of 8.3-9.0, biomass productivity reduced from 46.0 to 37.2%. It is especially interesting that at the alkaline pH values of 7.5 and 8.0 biomass productivity of microalgae increased, which indicates the optimal growth conditions at this narrow pH range. An ability of microalgae to produce exopolysaccharides opens prospects of their use for practical purposes.

About the Authors

V. F. Dolganyuk
Immanuel Kant Baltic Federal University
Russian Federation

Vyacheslav F. Dolganyuk - Candidate of Technical Sciences, Researcher, Institute of Living Systems, Immanuel Kant Baltic Federal University.

14, A. Nevsky str., 236041, Kaliningrad

Tel.: +7-961-707-24-53



E. V. Kashirskikh
Immanuel Kant Baltic Federal University
Russian Federation

Egor V. Kashirskikh - Candidate of Technical Sciences, Researcher, Institute of Living Systems, Immanuel Kant Baltic Federal University.

14, A. Nevsky str., 236041, Kaliningrad

Tel.: +7-923-504-23-23



E. A. Budenkova
Immanuel Kant Baltic Federal University
Russian Federation

Ekaterina A. Budenkova - Engineer, Institute of Living Systems, Immanuel Kant Baltic Federal University.

14, A. Nevsky str., 236041, Kaliningrad

Tel.: +7-4012-595-595



A. P. Andreeva
Immanuel Kant Baltic Federal University
Russian Federation

Anna P. Andreeva - Candidate of Biological Sciences, Head of Laboratory, Immanuel Kant Baltic Federal University.

14, A. Nevsky str., 236041, Kaliningrad

Tel.: +7-921-854-98-62



S. A. Sukhikh
Immanuel Kant Baltic Federal University
Russian Federation

Stanislav A. Sukhikh - Doctor of Technical Sciences., Docent, Head of Laboratory, Immanuel Kant Baltic Federal University.

14, A. Nevsky str., 236041, Kaliningrad

Tel.: +7-960-903-62-81



References

1. Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394-404. https://doi.org/10.1016/j.rser.2018.04.034

2. Villarruel-Lopez, A., Ascencio, F., Nuno, K. (2017). Microalgae, a potential natural functional food source — A review. Polish Journal of Food and Nutrition Sciences, 67(4), 251-263. https://doi.org/10.1515/pjfns-2017-0017

3. Sprague, M., Betancor, M. B., Tocher, D. R. (2017). Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnology Letters, 39(11), 1599-1609. https://doi.org/10.1007/s10529-017-2402-6

4. Ferreira, G. F., Ri'os Pinto, L. F., Maciel Filho, R., Fregolente, L. V. (2019). A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renewable and Sustainable Energy Reviews, 109, 448-466. https://doi.org/10.1016/j.rser.2019.04.052

5. Scharff, C., Domurath, N., Wensch-Dorendorf, M., Schroder, F.-G. (2017). Effect of different photoperiods on the biochemical profile of the green algae C. vulgaris and S. obliquus. Acta Horticulturae, 1170, 1149-1156. https://doi.org/10.17660/ActaHortic.2017.1170.148

6. Borowitzka, M. A. (2013). High-value products from microalgae — their development and commercialization. Journal of Applied Phycology, 25(3), 743-756. https://doi.org/10.1007/s10811-013-9983-9

7. Suganya. T., Varman, M., Masjuki, H. H., Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909-941. https://doi.org/10.1016/j.rser.2015.11.026

8. Santiago-Morales, I. S., Trujillo-Valle, L., Marquez-Rocha, F. J., Hernandez, J.F.L. (2018). Tocopherols, phycocyanin and superoxide dismutase from microalgae: As potential food antioxidants. Applied Food Biotechnology, 5(1), 19-27. https://doi.org/10.22037/afb.v5i1.17884

9. Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S., Lee, D.-J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54-67. https://doi.org/10.1016/j.bio-techadv.2017.09.009

10. Mazumdar, N., Novis, P. M., Visnovsky, G., Gostomski, P. A. (2019). Effect of nutrients on the growth of a new alpine strain of Haematococcus (Chlorophyceae) from New Zealand. Phycological Research, 67(1), 21-27. https://doi.org/10.1111/pre.12344

11. Mantzorou, A., Ververidis, F. (2019). Microalgal biofilms: A further step over current microalgal cultivation techniques. Science of the Total Environment, 651, 3187-3201. https://doi.org/10.1016/j.scitotenv.2018.09.355

12. Nguyen, H. C., Su, C.-H., Yu, Y.-K., Huong, D. T.M. (2018). Sugarcane bagasse as a novel carbon source for heterotrophic cultivation of oleaginous microalga Schizochytrium sp. Industrial Crops and Products, 121, 99-105. https://doi.org/10.1016/j.indcrop.2018.05.005

13. Lafarga, T. (2019). Cultured microalgae and compounds derived thereof for food applications: Strain selection and cultivation, drying, and processing strategies. Food Reviews International, 36(6), 559-583. https://doi.org/10.1080/87559129.2019.1655572

14. Li, Z., Li, Y., Zhang, X., Tan, T. (2015). Lipid extraction from non-bro-ken and high water content microalgae Chlorella spp. by three-phase partitioning. Algal Research, 10, 218-223. https://doi.org/10.1016/j.al-gal.2015.04.021

15. Zhao, G., Chen, X., Wang, L. Zhou, S., Feng, H., Chen, W. N. et al. (2013). Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresource Technology, 128, 337-344. https://doi.org/10.1016/j.biortech.2012.10.038

16. Bleakley, S., Hayes, M. (2017). Algal proteins: extraction, application, and challenges concerning production. Foods, 6(5), Article 33, 1-34. https://doi.org/10.3390/foods6050033

17. Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R. D., Drogui, P. et al. (2018). The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews, 90, 336-346. https://doi.org/10.1016/j.rser.2018.03.073

18. Su, Y., Song, K., Zhang, P. Su, Y., Cheng, J., Chen, X. (2017). Progress of microalgae biofuel's commercialization. Renewable and Sustainable Energy Reviews, 74, 402-411. https://doi.org/10.1016/j.rser.2016.12.078

19. Amorim, M. L., Soares, J., Coimbra, J. S. D. R., Leite, M. D O., Albino, L. F. T., Martins, M. A. (2020). Microalgae proteins: Production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition, 61(12), 1976-2002. https://doi.org/10.1080/10408398.2020.1768046

20. Phong, W. N., Show, P. L., Ling, T. C., Juan, J. C., Ng, E.-P., Chang, J.-S. (2018). Mild cell disruption methods for bio-functional proteins recovery from microalgae — Recent developments and future perspectives. Algal Research, 31, 506-516. https://doi.org/10.1016/j.algal.2017.04.005

21. Zielinski, D., Fraczyk, J., Debowski, M., Zielinski, M., Kaminski, Z., Kregiel, D. et al. (2020). Biological activity of hydrophilic extract of Chlorella vulgaris grown on post-fermentation leachate from a biogas plant supplied with stillage and maize silage. Molecules, 25(8), Article 25081790. https://doi.org/10.3390/molecules25081790

22. Frazzini, S., Scaglia, E., Dell'anno, M., Reggi, S., Panseri, S., Giromini, C. et al. (2022). Antioxidant and antimicrobial activity of algal and cyanobacterial extracts: An in vitro study. Antioxidants, 11, Article 992. https://doi.org/10.3390/antiox11050992

23. Selivanova, E. A., Ignatenko, M. E., Nemtseva, N. V. (2014). Antagonistic activity of novel green microalgae strains. Zhurnal Mikrobiologii Epidemi-ologii Immunobiologii, 4, 72-76. (In Russian)

24. Pina-Perez, M. C., Rivas, A., Martinez, A., Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry, 235, 34-44. https://doi.org/10.1016/j.foodchem.2017.05.033

25. Singh, M., Singh, S., Prasad, S., Gambhir, I. (2008). Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, 3(3), 115-122.

26. Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 1-10. https://doi.org/10.1080/26388081.2020.1715256

27. Mostafa, S. M. S. (2012). Microalgal biotechnology: Prospects and applications. Chapter in a book: Plant Science. London, UK: IntechOpen Ltd, 2012. https://doi.org/10.5772/53694

28. Ahmad, M. T., Shariff, M., Yusoff, F. M., Goh, Y. M., Banerjee, S. (2018). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 1, 1-19. https://doi.org/10.1111/raq.12320

29. Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007

30. Tabarsa, M., Shin, I. S., Lee, J. H., Surayot, U., Park, W., You, S. (2015). An immune-enhancing water-soluble a glucan from Chlorella vulgaris and structural characteristics. Food Science and Biotechnology, 24(6), 19331941. https://doi.org/10.1007/s10068-015-0255-0

31. Scott, A. M., Beller, E., Glasziou, P., Clark, J., Ranakusuma, R. W., Byambasuren, O. et al. (2018). Is antimicrobial administration to food animals a direct threat to human health? A rapid systematic review. International Journal of Antimicrobial Agents, 52(3), 316-323. https://doi.org/10.1016/j.ijantimicag.2018.04.005

32. Sharma, C., Rokana, N., Chandra, M., Singh, B. P., Gulhane, R. D., Gill, J. P. S. et al. (2018). Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Frontiers in Veterinary Science, 4(JAN), Article 237. https://doi.org/10.3389/fvets.2017.00237

33. Caprarulo, V., Hejna, M., Giromini, C., Liu, Y., Dell'Anno, M., Sotira, S. et al. (2020). Evaluation of dietary administration of chestnut and quebracho tannins on growth, serum metabolites and fecal parameters of weaned piglets. Animals, 10(11), Article 1945. https://doi.org/10.3390/ani10111945

34. Ricky, R., Chiampo, F., Shanthakumar, S. (2022). Efficacy of ciprofloxacin and amoxicillin removal and the effect on the biochemical composition of chlorella vulgaris. Bioengineering, 9(4), Article 134. https://doi.org/10.3390/bioengineering9040134

35. Rathi Bhuvaneswari, G., Shukla, S.P., Makesh, M., Thirumalaiselvan, S., Arun Sudhagar, S., Kothari, D. C. et al. (2013). Antibacterial activity of spirulina (arthospira platensisgeitler) against bacterial pathogens in aquaculture. The Israeli Journal of Aquaculture — Bamidgeh, 932(8), 1-8.

36. Salido, J., Sanchez, C., Ruiz-Santaquiteria, J., Cristobal, G., Blanco, S., Bueno, G. (2020). A low-cost automated digital microscopy platform for automatic identification of diatoms. Applied Sciences, 10, Article 6033. https://doi.org/10.3390/app10176033

37. Mu, P., Plummer, D.T. (2001). Introduction to practical biochemistry. Chapter in a book: Tata McGraw-Hill Education: New York, NY, USA, 2001.

38. Erbland, P., Caron, S., Peterson, M., Alyokhin, A. (2020). Design and performance of a low-cost, automated, large-scale photobioreactor for microalgae production, Aquacultural Engineering, 90, Article 102103. https://doi.org/10.1016/j.aquaeng.2020.102103

39. Eilertsen, H. C., Eriksen, G. K., Bergum, J.-S., Stromholt, J., Elvevoll, E., Eilertsen, K.-E. et al. (2022). Mass cultivation of microalgae: I. Experiences with vertical column airlift photobioreactors, diatoms and CO2 sequestration. Applied Sciences, 12, Article 3082. https://doi.org/10.3390/app12063082

40. Barsky, E. L., Lebedeva, A. F., Savanina, Ya. V. (1999). Changes in the redox potential of the cultivation medium of the bacterium Pseudomonas diminuta resistant to heavy metals: relationship with the release of metallothionein-like proteins from cells. Vestnik Moskovskogo Universite-ta. Seriya 16. Biologiya, 2, 11-15. (In Russian)

41. Maeda, K, Owada, M, Kimura, N, Omata, K, Karube, I. (1995). CO2 fixation from flue gas on coal fired thermal power plant by microalgae. Energy Conversion and Management, 36(6-9), 717-720. https://doi.org/10.1016/0196-8904(95)00105-M

42. Darias, J., Rovirosa, J., San Martin, A., Di'az, A.-R., Dorta, E., Cueto, M. (2001). Furoplocamioids A-C, novel polyhalogenated furanoid monoterpenes from plocamium cartilagineum. Journal of Natural Products, 64(11), 1383-1387. https://doi.org/10.1021/np010297u

43. Barreto, M., Meyer, J. J. M. (2006). Isolation and antimicrobial activity of a lanosol derivative from osmundaria serrata (rhodophyta) and a visual exploration of its biofilm covering. South African Journal of Botany, 72(4), 521-528. https://doi.org/10.1016/j.sajb.2006.01.006

44. Kavita, K., Singh, V. K., Jha, B. (2014). 24-Branched Д5 sterols from laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiological Research, 169(4), 301-306. https://doi.org/10.1016/j.micres.2013.07.002

45. dos Santos Amorim, R. N., Rodrigues, J. A. G., Holanda, M. L., Quindere, A. L. G., de Paula, R. C. M., Melo, V. M. M. et al. (2012). Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed gracilaria ornata. Brazilian Archives of Biology and Technology, 55(2), 171181. https://doi.org/10.1590/S1516-89132012000200001

46. Abdel-Moneim, A.-M. E., El-Saadony, M. T., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S. M. et al. (2022). Antioxidant and antimicrobial activities of spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences, 29(2), 1197-1209. https://doi.org/10.1016/j.sjbs.2021.09.046


Review

For citations:


Dolganyuk V.F., Kashirskikh E.V., Budenkova E.A., Andreeva A.P., Sukhikh S.A. Study of morphological features and growth parameters of psychrophilic microalgae and cyanobacteria. Food systems. 2022;5(4):289-297. (In Russ.) https://doi.org/10.21323/2618-9771-2022-5-4-289-297

Views: 721


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)