Preview

Food systems

Advanced search

Systemic measures on reduction of greenhouse gas emissions in animal husbandry enterprises. A review

https://doi.org/10.21323/2618-9771-2022-5-3-202-211

Abstract

The paper presents a review of different approaches to solving problems arising upon greenhouse gas emission from activities of animal husbandry enterprises. The sector of ruminant animal production is under close attention for ecological reasons due to its significant contribution to emission of enteric methane (CH4) and an effect on global climate change. Moreover, analysis of the main sources of methane emission in the agricultural sector of the agro-industrial complex, including by species of livestock and poultry, is given. An impact of a feeding system, feeds and feed additives in use and manure storage on nitrogen losses is estimated. In this connection, the authors examine several promising scientific and practical development results that are aimed to reducing emissions and formulating a strategy for controlling direct emissions of greenhouse gases in animal husbandry that do not jeopardize animal productivity, especially in the context of sustainability. Practical activities that envisage the development of the complex of measures for reduction of greenhouse gas emissions are examined. Potential strategies for mitigating their consequences were divided into the following main categories: animal raising, changes in animal diets and manipulations with rumen. Furthermore, several other measures facilitating an increase in livestock productivity and reduction of the negative effect on the environment were taken. Eco-economic methods for assessing emissions of harmful gases in production of animal husbandry products are considered and the necessity of developing simpler cost-effective technologies for quantitative assessment of greenhouse gas emissions and a search for solutions to preserve favorable climate is emphasized. When assessing greenhouse gas emissions, the loss sizes and cumulative ecological damage are taken into account. Realization of strategies for emission reduction should lead to an increase in animal productivity and a decrease in the negative effect of animal husbandry on the environment.

About the Authors

I. V. Petrunina
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Irina V. Petrunina, Senior Researcher, Center of Economic and Analytical Research and Information Technologies

26, Talalikhina str., 109316, Moscow

Теl.: +7–495–676–95–11 (253) 



N. A. Gorbunova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Nataliya A. Gorbunova, Candidate of Technical Sciences, Scientific Secretary

26, Talalikhina str., 109316, Moscow

Теl.: +7–495–676–95–11 (316) 



References

1. Ungerfeld, E.M., Beauchemin, K.A., Muñoz, C. (2022). Current perspectives on achieving pronounced enteric methane mitigation from ruminant production. Frontiers in Animal Science, 2, Article 795299. https://doi. org/10.3389/fanim.2021.795200

2. Glasson, C.R.K., Kinley, R.D., de Nys, R., King, N., Adams, S. L., Packer, M. A. et al. (2022). Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Research, 64, Article 102673. 10.1016/j. algal.2022.102673

3. Gros, V., Williams, J., Aardenne, J.A., Salisbury, G., Hofmann, R., Lawrence, M.G. et al. (2003). Origin of anthropogenic hydrocarbons and halocarbons measured in the summertime European outflow. Atmospheric Chemistry and Physics, 3(4), 1893-1923. https://doi.org/10.5194/acp-3- 1223-2003

4. Berlin, J., Sund, V. (2010). Environmental life cycle assessment (LCA) of ready meals: LCA of two meals; pork and chicken a screening assessment of six ready meals. Goteborg: SIK — Institutet för livsmedel och bioteknik, 2010.

5. Kiehl, J.T., Kevin, E. Trenberth, K.E. (1997). Earths Annual Global Mean Energy. Bulletin of the American Meteorological Society, 78(2), 197-208. https://doi.org/10.1175/1520-0477(1997)078<0197: EAGMEB>2.0.CO;2

6. Moares, L.E., Strathe A. B., Fadel, J.G., Casper, D.P., Kebreab, E. (2014) Prediction of enteric methane emissions from cattle. Global Change Biology, 20(7), 2140-2148. https://doi.org/10.1111/gcb.12471

7. Dourmad, J.-Y, Rigolot, C, van der Werf, H. (17-20 May, 2008). Emission of greenhouse gas, developing management and animal farming systems to assist mitigation. Livestock and Global Climate Change, 2008, Hammamet, Tunisia, hal-01460853f

8. Gerber, P.J., Hristov, A.N., Henderson, B., Makkar, H., Oh, J., Lee, C. et al. (2013). Technical options for mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal: an International Journal of Animal Bioscience, 7(Suppl 2), 220-234. https://doi.org/10.1017/ S1751731113000876

9. Beauchemin, K.A., Ungerfeld, E.M., Eckard, R.J., Wang, M. (2020). Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14(S1), S2-S16. https://doi. org/10.1017/S1751731119003100

10. McAllister, T.A., Newbold, C.J. (2008). Redirecting rumen methane to reduce methanogenesis. Australian Journal of Experimental Agriculture, 48(1-2), 7-13. https://doi.org/10.1071/EA07218

11. Eckard, R.J., Grainger, C., de Klein, C.A.M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science, 130(1-3), 47-56. https://doi.org/10.1016/j.livsci.2010.02.010

12. Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss, W.P., Tricarico, J.M. (2014). Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. https://doi.org/10.3168/jds.2013-7234

13. Pereira, L.G.R., Machado, F.S., Campos, M.M., Guimarães, R., Tomich, T. R., Reis, L.G. at al. (2015). Enteric methane mitigation strategies in ruminants: A review. Revista Colombiana de Ciencias Pecuarias, 28(2), 124-143. https://doi.org/10.17533/udea.rccp.v28n2a02

14. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J. et al. (2013). Tackling climate change through live- stock — A global assessment of emissions and mitigation opportunities. Rome: FAO. Retrieved from https://www.fao.org/3/i3437e/i3437e.pdf Accessed June 18, 2022

15. Beauchemin, K.A., McAllister, T.A., McGinn, S.M. (2009). Dietary mitigation of enteric methane from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4.35, 1-18. https://doi.org/10.1079/PAVSNNR20094035

16. Herrero, M., Conant, R.T., Havlik, P., Thornton, P. K., Conant, R. T., Smith, P. et al. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6(5), 452-461. https://doi.org/10.1038/nclimate2925

17. Llonch, P., Haskell, M.J., Dewhurst, R.J., Turner, S.P. (2017). Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal, 11(2), 274-284. https://doi.org/10.1017/S1751731116001440

18. Belchikova, E. (2021). Created a cow feed additive that will reduce methane emissions and help farmers earn money. Retrieved from https://yandex.ru/turbo/techinsider.ru/s/science/news-699933-sozdana-dobavka-dlyakorovego-korma-kotoraya-snizit-vybrosy-metana-i-pomozhet-zarabotat-fermeram/ Accessed June 10, 2022 (In Russian)

19. Samardzic, M., Valentini, R., Vasenev, I.I (2014). Environmental assessment of specific greenhouse gas emissions by meat production and consumption in the Central Region of Russia’s conditions. Achievements of Science and Technology in Agro-Industrial Complex, 9, 61-64. (In Russian)

20. Eugene, M., Klumpp, K., Sauvant, S. (2021) Methane mitigating options with forages fed to ruminants. Grass Forage Science, 76(2), 196-204. https://doi.org/10.1111/gfs.12540

21. Pal, A., Kamthania, M.C., Kumar, A. (2014). Bioactive compounds and properties of seaweeds-a review. Open Access Library Journal, 1(04), Article e752. https://doi.org/10.4236/oalib.1100752

22. Gaillard, C., Bhatti, H.S., Garrido, M., Lind, V., Roleda, M.Y., Weisbjerg, M.R. (2018). Amino acid profiles of nine seaweed species and their insitu degradability in dairy cows. Animal Feed Science and Technology, 24, 210-222. https://doi.org/10.1016/j.anifeedsci.2018.05.003

23. Nunes, N., Valente, S., Ferraz, S., Barreto, M.C., Pinheiro de Carvalho, M.A.A. (2018) Nutraceutical potential of Asparagopsis taxiformis extracts and assessment of a downstream purification strategy. Heliyon, 4(11), Article e00957. https://doi.org/10.1016/j.heliyon.2018.e00957

24. Roque, B.M., Venegas, M., Kinley, R.D., de Nys R., Duarte, T. L., Yang, X. at al. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by 80 percent in beef steers.PLoS ONE, 16(3March), Article e024782017. https://doi.org/10.1371/journal.pone.0247820

25. Duan, X.-J., Zhang, W.-W., Li, X.-M., Wang, B.-G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95(1), 37-43 https://doi.org/10.1016/j.foodchem.2004.12.015

26. Morais, T., Inacio, A., Coutinho, T., Ministro, M., Cotas J., Pereira L. et al. (2020). Seaweed potential in the animal feed: a review. Marine Science and Engineering, 8, Article 559. https://doi.org/10.3390/jmse8080559

27. Roque, B.M, Salwen, J.K, Kinley, R, Kebreab, E. (2019). Inclusion of Asparagopsis armata in lactating dairy cow’s diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132-138. https://doi.org/10.1016/j.jclepro.2019.06.193

28. Kinley, R.D., Martinez-Fernandez, G., Mathews, M.K., de Nys, R.D., Magnusson, M., Tomkins, N.W. (2020). Mitigating the carbon footprint and improving the productivity of ruminant livestock agriculture using red seaweed. Journal of Cleaner Production, 259, Article 120836. https://doi.org/10.1016/j.jclepro.2020.120836

29. Machado, L., Tomkins, N., Magnusson, M., Midgley, D.J., de Nys, R., Rosewarne, C.P. (2018). In vitro response of rumen microbiota to the antimethanogenic red macroalga Asparagopsis taxiformis. Microbial Ecology, 75, 811-818. https://doi.org/10.1007/s00248-017-1086-8

30. Tomkins, N.W., Colegate, S.M., Hunter, R.A. (2009). A bromochloromethane formulation reduces enteric methanogenesis in cattle-fed grainbased diets. Animal Production Science, 49(12), 1053-1058. https://doi.org/10.1071/EA08223

31. Wang, Y., Xu, Z., Bach, S.J., McAllister, T.A. (2009). Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Australasian Journal of Animal Sciences, 22(2), 238-245. https://doi.org/10.5713/ajas.2009.80213

32. Saggar, S. (2010). Estimation of nitrous oxide emissions from ecosystems and its mitigation technologies. Agriculture, Ecosystems and Environment, 136(3-4), 189-191. https://doi.org/10.1016/j.agee.2010.01.007

33. Environmental Protection Agency (2010). Inventory of U.S. greenhouse gas emissions and sinks: 1990-2008. Washington (DC): U. S. Environ-mental Protection Agency. Retrieved from https://www.epa.gov/sites/ production/files/2015-12/documents/508_complete_ghg_1990_ 2008.pdf Accessed June 15, 2022

34. Gridneva, T.T. (2012). Emission of harmful gases livestock product. Bulletin of the All-Russian Scientific Research Institute of Animal Husbandry Mechanization, 4(8), 61-69. (In Russian)

35. Borhan, M.S., Mukhtar, S., Capareda, S., Rahman, S. (2012). Greenhouse gas emissions from housing and manure management systems at confined livestock operations. Chapter in a book: Waste Management — An Integrated Vision, Rijeka (Croatia): InTech. 259-296. https://dx.doi.org/10.5772/51175

36. Sajeev, E.P.M., Winiwarter, W., Amon, B. (2018). Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: Abatement options and emission interactions. Journal of Environmental Quality, 47(1), 30-41. https://doi.org/10.2134/jeq2017.05.0199

37. Montes, F., Meinen, R., Dell, C., Rotz, A., Hristov, A.N., Oh, J. et al. (2013). Special topics — Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. Journal of Animal Science, 91(11), 5070-5094. https://doi.org/10.2527/jas.2013-6584

38. Holly, M.A., Larson, R.A., Powell, J.M., Ruark, M.D., Aguirre-Villegas, H. (2017). Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agriculture, Ecosystems and Environment, 239, 410-419. https://doi.org/10.1016/j.agee.2017.02.007

39. Battini, F., Agostini, A., Boulamanti, A.K., Giuntoli, J., Amaducci, S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Science of the Total Environment, 481(1), 196-208. https://doi.org/10.1016/j.scitotenv.2014.02.038

40. Petersen, S.O., Sommer. S. G. (2011). Ammonia and nitrous oxide interactions: Roles of manure organic matter management. Animal Feed Science and Technology, 166-167, 503-513. https://doi.org/10.1016j.anifeedsci.2011.04.077

41. Lam, S.K., Suter, H., Mosier, A.R., Chen, D. (2016). Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword? Global Change Biology, 23(2), 485-489. https://doi.org/10.1111/gcb.13338

42. Grossi, G., Goglio, P., Vitali, A., Williams, A.G. (2019). Livestock and climate change: impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69-76. https://doi.org/10.1093/af/vfy034

43. Williams, A., Chatterton, J., Hateley, G., Curwen, A., Elliott, J. (2015). A systems-life cycle assessment approach to modelling the impact of improvements in cattle health on greenhouse gas emissions. Advances in Animal Biosciences, 6(1), 29-31. https://doi.org/10.1017/S2040470014000478

44. Vasenyov I. I., Buzylyov A. V., Belik A. V. (2007). Geo-informational and methodical grounds for agroecological optimization and precise farming under conditions of black-earth-zone in Russian Federation. Izvestiya of Timiryazev Agricultural Academy, 2, 28-55. (In Russian)

45. Pieper, M., Michalke, A., Gaugler, T. (2020). Calculation of external climate costs for food highlights inadequate pricing of animal products. Nature Communications, 11(1), Article 6117. https://doi.org/10.1038/s41467-020-19474-6

46. Jose, V.S., Sejian, V., Bagath, M., Ratnakaran, A. P., Lees, A.M., Al-Hosni, Y.A.S. at al. (2016). Modeling of Greenhouse Gas Emission from Livestock. Frontiers in Environmental Science, 4(APR), Article 27. https://doi.org/10.3389/fenvs.2016.00027

47. Petersen, S. O., Blanchard, M., Chadwick, D., Del Prado, A., Edouard, N., Mosquera, J. at al. (2013). Manure management for greenhouse gas mitigation. Animal, 7(Specialissue2), 266-282. https://doi.org/10.1017/S1751731113000736

48. Amani, P., Schiefer, G. (2011). Review on suitability of available LCIA methodologies for assessing environmental impact of the food sector. International Journal on Food System Dynamics, 2(2), 194-206. https://doi.org/10.18461/ijfsd.v2i2.228

49. Gibbons, J. M., Ramsden, S. J., Blake, A. (2006). Modelling uncertainty in greenhouse gas emissions from UK agriculture at the farm level. Agriculture, Ecosystems and Environment, 112(4), 347-355. https://doi.org/10.1016/j.agee.2005.08.029

50. De Vries, M., de Boer, I.J.M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science, 128(1-3), 1-11. https://doi.org/10.1016/j.livsci.2009.11.007

51. Bryant, J.R., Snow, V.O. (2008). Modelling pastoral farm agro-ecosystems: A review. New Zealand Journal of Agricultural Research, 51(3), 349-363. https://doi.org/10.1080/00288230809510466


Review

For citations:


Petrunina I.V., Gorbunova N.A. Systemic measures on reduction of greenhouse gas emissions in animal husbandry enterprises. A review. Food systems. 2022;5(3):202-211. (In Russ.) https://doi.org/10.21323/2618-9771-2022-5-3-202-211

Views: 794


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)