Preview

Пищевые системы

Расширенный поиск

ТЕНДЕНЦИИ В РАЗВИТИИ ТРЕХМЕРНОЙ ПЕЧАТИ ПРОДУКТОВ ПИТАНИЯ

https://doi.org/10.21323/2618-9771-2022-5-1-23-29

Аннотация

В  статье сделан обзор существующих схем 3D‑принтеров для печати съедобными компонентами. Рассмотрены основные виды экструдеров, используемых для печати пищевыми смесями. Описаны перспективные компоненты, на основе которых возможно создание смесей для пищевой 3D‑печати. Приведены примеры успешного применения 3D‑печати для создания пищевых продуктов. Рассмотрено понятие 4D-печати.

Об авторах

В. Ю. Корниенко
Федеральный научный центр пищевых систем им. В. М. Горбатова
Россия

Корниенко Владимир Юрьевич — кандидат биологических наук, старший научный сотрудник, Лаборатория Молекулярной биологии и биоинформатики

109316, Москва, ул. Талалихина, 26
Тел.: +7–495–676–95–11(109)



М. Ю. Минаев
Федеральный научный центр пищевых систем им. В. М. Горбатова
Россия

Минаев Михаил Юрьевич  — кандидат технических наук, заведующий лабораторией Молекулярной биологии и биоинформатики

109316, Москва, ул. Талалихина, 26
Тел.: +7–495–676–95–11 (109)



Список литературы

1. Gorbunova, N. A. (2020). Possibilities of additive technologies in the meat industry. A review. Theory and Practice of Meat Processing, 5(1), 9–16. https://doi.org/10.21323/2414–438X‑2020–5–1–9–16

2. Дресвянников, В. А., Страхов, Е. П., Возмищева, А. С. (2017). Анализ применения аддитивных технологий в пищевой промышленности. Продовольственная политика и безопасность, 4(3), 133–139. https://doi.org/10.18334/ppib.4.3.38500

3. Zhao, L., Zhang, M., Chitrakar, B., Adhikari, B. (2020). Recent advances in functional 3D printing of foods: a review of functions of ingredients and internal structures. Critical Reviews in Food Science and Nutrition, 61(21), 3489–3503. https://doi.org/10.1080/10408398.2020.1799327

4. Li, P., Mellor, S., Griffin, J., Waelde, C., Hao, L., Everson, R. (2014). Intellectual property and 3D printing: A case study on 3D chocolate printing. Journal of Intellectual Property Law and Practice, 9(4), 322–332. https://doi.org/10.1093/jiplp/jpt217

5. Severini, C., Derossi, A. (2016). Could the 3D printing technology be a useful strategy to obtain customized nutrition? Journal of Clinical Gastroenterology, 50, S175–S178. https://doi.org/10.1097/MCG.0000000000000705

6. Rodgers, S. (2016). Minimally processed functional foods: Technological and operational pathways. Journal of Food Science, 81(10), R2309-R2319. https://doi.org/10.1111/1750–3841.13422

7. Terfansky, M.L., Thangavelu, M. (September 10–12, 2013). 3D printing of food for space missions. AIAA SPACE2013 Conference and Exposition. Published by the American Institute of Aeronautics and Astronautics, Inc., San Diego, CA. https://doi.org/10.2514/6.2013–5346

8. Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., Mirade, P. S. (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188–198. https://doi.org/10.1016/j.tifs.2019.02.023

9. Hamilton, C. A., Alici, G. Panhuis, M. I. H. (2018). 3D printing vegemite and marmite: Redefining “breadboards”. Journal of Food Engineering, 220, 83–88. https://doi.org/10.1016/j.jfoodeng.2017.01.008

10. Saha, D., Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 47(6), 587–597. https://doi.org/10.1007/s13197–010–0162–6

11. Liu F., Zhang X., Ling P., Liao J., Zhao M., Mei L. et al. (2017). Immunomodulatory effects of xanthan gum in LPS‑stimulated RAW 264.7 macrophages. Carbohydrate Polymers, 169, 65–74. https://doi.org/10.1016/j.carbpol.2017.04.003

12. Kim, H. W., Lee, I. J., Park, S. M., Lee, J. H., Nguyen, M.-H., Park, H. J. (2019). Effect of hydrocolloid addition on dimensional stability in postprocessing of 3D printable cookie dough. LWT, 101, 69–75. https://doi.org/10.1016/j.lwt.2018.11.019

13. Kim, H. W., Lee, J. H., Park, S. M., Lee, M. H., Lee, I. W., Doh, H. S., Park, H. J. (2018). Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing. Journal of Food Science, 83(12), 2923–2932. https://doi.org/10.1111/1750–3841.14391

14. Holland, S., Tuck, C., Foster, T. (2018). Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting. Carbohydrate Polymers, 200, 229–238. https://doi.org/10.1016/j.carbpol.2018.07.064

15. Liu, Z., Zhang, M., Bhandari, B. (2018). Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes. International Journal of Biological Macromolecules, 117, 1179–1187. https://doi.org/10.1016/j.ijbiomac.2018.06.048

16. Liu, Z., Bhandari, B., Prakash, S., Mantihal, S., Zhang, M. (2019). Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids, 87, 413–424. https://doi.org/10.1016/j.foodhyd.2018.08.026

17. Lattimer, J. M., Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289. https://doi.org/10.3390/nu2121266

18. Vancauwenberghe, V., Baiye Mfortaw Mbong V., Vanstreels, E., Verboven, P., Lammertyn, J., Nicolai, B. (2019). 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. Journal of Food Engineering, 263, 454–464. https://doi.org/10.1016/j.jfoodeng.2017.12.003

19. Vancauwenberghe, V., Verboven, P., Lammertyn, J., Nicolai, B. (2018). Development of a coaxial extrusion deposition for 3D printing of customizable pectin-based food simulant. Journal of Food Engineering, 225, 42–52. https://doi.org/10.1016/j.jfoodeng.2018.01.008

20. Fraeye, I., Colle, I., Vandevenne, E., Duvetter T., Van Buggenhout S., Moldenaers P. et al. (2010). Influence of pectin structure on texture of pectin–calcium gels. Innovative Food Science and Emerging Technologies, 11(2), 401–409. https://doi.org/10.1016/j.ifset.2009.08.015

21. Liu, R.H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American Journal of Clinical Nutrition, 78(3 SUPPL.), 517S‑520S. https://doi.org/10.1093/ajcn/78.3.517S

22. Wuestenberg, T. (2014). Cellulose and cellulose derivatives in the food industry: Fundamentals and applications. London, UK: John Wiley and Sons Ltd.

23. Lee, J. H., Won D. J., Kim H. W., Park H. J. (2019). Effect of particle size on 3D printing performance of the food-ink system with cellular food materials. Journal of Food Engineering, 256, 1–8. https://doi.org/10.1016/j.jfoodeng.2019.03.014

24. Derossi, A., Caporizzi, R., Azzollini, D., Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.015

25. Huang, M.-S., Zhang, M., Bhandari, B. (2019). Assessing the 3D Printing Precision and Texture Properties of Brown Rice Induced by Infill Levels and Printing Variables. Food and Bioprocess Technology, 12(7), 1185–1196. https://doi.org/10.1007/s11947–019–02287-x

26. Qi, L., Yu, L., Yu, Y. (2015). Research advancement in the nutritional value and processing technologies of brown rice. Food and Nutrition in China, 3, 68–71.

27. Lille, M., Nurmela, A., Nordlund, E., Metsa-Kortelainen, S., Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusionbased 3D printing. Journal of Food Engineering, 220, 20–27. https://doi.org/10.1016/j.jfoodeng.2017.04.034

28. Zhang, L., Lou, Y., Schutyser, M. A. I. (2018). 3D printing of cerealbased food structures containing probiotics. Food Structure, 18, 14–22. https://doi.org/10.1016/j.foostr.2018.10.002

29. An, Y.-J., Guo, C.-F., Zhang, M., Zhong, Z.-P. (2019). Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass. Journal of the Science of Food and Agriculture, 99(2), 639–646. https://doi.org/10.1002/jsfa.9226

30. Liu, Z., Bhandari, B., Zhang, M. (2020). Incorporation of probiotics (Bifidobacterium animalis subsp. Lactis) into 3D printed mashed potatoes: Effects of variables on the viability. Food Research International, 128, Article 108795. https://doi.org/10.1016/j.foodres.2019.108795

31. Zhang, Q., Han, D., Li, D. (2012). Nutritional components and functional properties of yellow pea. Food Science and Technology, 37, 141–144.

32. Palander, S., Laurinen, P., Perttilä, S., Valaja, J., Partanen, K. (2006). Protein and amino acid digestibility and metabolizable energy value of pea (Pisum sativum), faba bean (Vicia faba) and lupin (Lupinus angustifolius) seeds for turkeys of different age. Animal Feed Science and Technology, 127(1–2), 89–100. https://doi.org/10.1016/j.anifeedsci.2005.07.003

33. Feng, C., Zhang, M., Bhandari, B. (2019). Materials properties of printable edible inks and printing parameters optimization during 3D printing: A review. Critical Reviews in Food Science and Nutrition, 59(19), 3074– 3081. https://doi.org/10.1080/10408398.2018.1481823

34. Huntington, J. A., Stein P. E. (2001). Structure and properties of ovalbumin. Journal of Chromatography B: Biomedical Sciences and Applications, 756(1–2), 189–198. https://doi.org/10.1016/s0378–4347(01)00108–6

35. Chen, C., Huang, X., Ma, M. H. (2015). Research advances on antioxidative proteins in egg. China Poultry, 21, 43–47.

36. Nisbet, A. D., Saundry, R. H., Moir, A. J. G., Fothergill, L. A., Fothergill, J. E. (1981). The complete amino-acid sequence of hen ovalbumin. European Journal of Biochemistry, 115(2), 335–345. https://doi.org/10.1111/j.1432–1033.1981.tb05243.x

37. Nakamura, S., Kato, A., Kobayashi, K. (1992). Enhanced antioxidative effect of ovalbumin due to covalent binding of polysaccharides. Journal of Agricultural and Food Chemistry, 40(11), 2033–2037. https://doi.org/10.1021/jf00023a001

38. Liu, L., Meng, Y., Dai, X., Chen, K., Zhu, Y. (2019). 3D printing complex egg white protein objects: Properties and optimization. Food and Bioprocess Technology, 12(2), 267–279. https://doi.org/10.1007/s11947–018–2209-z

39. Liu, L., Yang, X., Bhandari, B., Meng, Y., Prakash, S. (2020). Optimization of the formulation and properties of 3D‑printed complex egg white protein objects. Foods, 9(2), Article 9020164. https://doi.org/10.3390/foods9020164

40. Zhang, Z.-H., Peng, H., Woo, M.W., Zeng, X.-A., Brennan, M., Brennan, C. S. (2020). Preparation and characterization of whey protein isolatechlorophyll microcapsules by spray drying: Effect of WPI ratios on the physicochemical and antioxidant properties. Journal of Food Engineering, 267, Article 109729. https://doi.org/10.1016/j.jfoodeng.2019.109729

41. Liu, Y., Liu, D., Wei, G., Ma, Y., Bhandari, B. Zhou, P. (2018). 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innovative Food Science and Emerging Technologies, 49, 116–126. https://doi.org/10.1016/j.ifset.2018.07.018

42. Liu, Y., Yu, Y., Liu, C., Regenstein, J. M., Liu, X., Zhou, P. (2019). Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing. LWT — Food Science and Technology, 102, 338–346. https://doi.org/10.1016/j.lwt.2018.12.053

43. Scerra, M. A., Barrett, S., Eswaranandam, S., Okamoto, M. (2018). Effects of 3D printing and thermal post processing on the stability of vitamin E acetate. Journal of the American Academy of Nutrition and Dietetics, 118(10), Poster Session: Food/Nutrition Science; Education; Management; Food Services/Culinary; Research, A148. https://doi.org/10.1016/j.jand.2018.08.101

44. Azam, R. S. M., Zhang, M., Bhandari, B., Yang, C. (2018). Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate. Food Biophysics, 13(3), 250–262. https://doi.org/10.1007/s11483–018–9531-x

45. Park, S. M., Kim, H. W. Park, H. J. (2020). Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production. Journal of Food Engineering, 271, Article 109781. https://doi.org/10.1016/j.jfoodeng.2019.109781

46. Николаев, Н. С., Корниенко, В. Н., Пляшешник, П. И. (2021). Особенности холодильной обработки замороженных десертов. Молочная промышленность, 2, 55–57. https://doi.org/10.31515/1019–8946–2021–02–55–57

47. Miao, S., Castro, N., Nowicki, M., Xia, L., Cui, H., Zhou, X. et al. (2017). 4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 20(10), 577–591. https://doi.org/10.1016/j.mattod.2017.06.005

48. Wang, W., Yao, L., Zhang, T., Cheng, C.-Y., Levine, D., Ishii, H. (6–11 May, 2017). Transformative appetite: Shape-changing food transforms from 2D to 3D by water interaction through cooking. Conference on Human Factors in Computing Systems — Proceedings, 6123–6132. https://doi.org/10.1145/3025453.3026019

49. Tao, Y., Do, Y., Yang, H., Lee, Y.-C., Wang, G., Mondoa, C. et al. (2019). Morphlour: Personalized flour-based morphing food induced by dehydration or hydration method. UIST 2019 — Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 329–340. https://doi.org/10.1145/3332165.3347949


Рецензия

Для цитирования:


Корниенко В.Ю., Минаев М.Ю. ТЕНДЕНЦИИ В РАЗВИТИИ ТРЕХМЕРНОЙ ПЕЧАТИ ПРОДУКТОВ ПИТАНИЯ. Пищевые системы. 2022;5(1):23-29. https://doi.org/10.21323/2618-9771-2022-5-1-23-29

For citation:


Kornienko V.Y., Minaev M.Y. TRENDS IN THE DEVELOPMENT OF 3D FOOD PRINTING. Food systems. 2022;5(1):23-29. (In Russ.) https://doi.org/10.21323/2618-9771-2022-5-1-23-29

Просмотров: 700


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)