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ABSTRACT

Monitoring and maintaining food quality, safety, and authenticity are the most important concerns in the food industry. The
cutting-edge flexible sensors for food monitoring precisely meet the needs of acquiring information on multiple parameters in
small space and more reasonable layout, providing data on mechanical deformations, and conformably attaching to arbitrarily
curved surfaces. Flexible sensing materials with a large specific surface area, high carrier mobility and carrier density, dense
active sites, outstanding tunability, and processability, such as two-dimensional carbon nanomaterials, conductive polymers,
and nanohybrid materials, have further improved the sensitivity, stability, and selectivity of flexible sensors. This article
attempts to critically review state-of-the-art developments with respect to materials, fabrication techniques, and sensing
mechanisms of devices, as well as the applications of the electrically-transduced flexible sensors. In addition, this review
elaborates on the transduction mechanisms of several typical transducers, with a focus on the physics behind, including the
modulation of doping level, Schottky barrier, and interfacial layer that typically lead to changes in conductivity, work function,
and permittivity. We also highlight the benefits, technical challenges with corresponding solutions of current flexible sensors,
and discuss potential strategies to overcome limitations in energy consumption, quantify the trade-offs in maintaining qual-
ity and marketability, optimize wireless communication, and explore new sensing patterns.
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IT'MBKUE CEHCOPBI JJI1I MOHUTOPUHTA ITUIEBBIX ITPOAYKTOB:
YACTDb 1 — ITPUHIIUII
Jlyo !, Huxutuna M. A.2, Cso II.1*

! TH>keHepHBbII KoJIIe K, KuTtaiickuii cesibCKOX03s1/iCTBEHHbIN yHUBepcuTeT, IlekuH, KHP
? ®epepasibHbBII HAYUHBIN LIEHTP MUIEBbIX cucTeM MM. B. M. Top6aToBa, MockBa, Poccust

K/IFOYEBBIE CJIOBA: AHHOTALIU A
2ubKuli ceHcop, MOHUTOPUHT U TIOAAEPKaHMEe KauecTBa, 6€30MacCHOCTY M ayTeHTUUHOCTU IMUIIEBbIX MPOAYKTOB SIBJISIOTCS Hauboiee Bask-
MOHUMOPUHZ HBIMY [TPOGIEMHBIMM BOITPOCAMM B TIUIIEBOI IPOMbIIIIEHHOCTY. CaMble COBpeMEeHHbIe TMOKME CEHCOPDI IJIST MOHUTOPUHTA
nuwessx NPooyKmoe,  MULIEBbIX MPOLYKTOB TOUHO COOTBETCTBYIOT MOTPEGHOCTAM B TIOyYeHM MHGOPMAIMHU 110 MHOTUM TIapaMeTpaM B He6O/b-
271aCMUYHbLe NO C60ell  1IIOM MPOCTPAHCTBE U Gojiee palMoOHAIbHOM pa3MeleHny, 00ecrieunBast JaHHbIe 10 MeXaHueckum nedhopManusm u mpu-
npupode, MexaHuueckoe jierasi COOTBETCTBYIONIMM 06pa3oM K MPOM3BOTIbHO M30THYTHIM TOBEPXHOCTSIM. [M6KMe CeHCOPHbIE MaTepUasIbl C GOMBIION
coomeemcmeue, YIeJIbHOI TUIONIAIbI0 TOBEPXHOCTY, BBICOKOV MOGMIIBHOCTHIO HOCUTEJSI M TVIOTHOCTbIO HOCUTEJISI, TZIOTHBIMM aKTUBHBIMU
npoeodswuli anekmpood, TOUKaMMu, IPEKPACHOH HACTPABAEMOCTbIO U TEXHOIOTMYHOCTHIO, TAKME KaK JIBYMEPHbIE YIIepOIHbIe HAHOMAaTEePUAIIBI, IIPO-
a7eKkmpuyeckoe BOJISILIVE TTOIMMEPbI M HAHOTUOPUHbIE MaTepUAaIbl, JOMOTHUTEIbHO YIYUIIMIN YYBCTBUTEIbHOCTD, CTAGMIBHOCTD U CeJIeK-
ce0ticmea, CeHCOPHbILI  TUBHOCTb TMOKMX CEHCOPOB. B MaHHOI cTaThe MpeaIpyHSITA MOMbITKa KPUTUIECKOTO 0630pa IepeoBbIX Pa3paboTOK B OTHO-
MEXaHU3M, MEXAHU3M  LLIeHUM MaTepuaaoB, METOLOB M3TOTOBIEHMS Y CEHCOPHBIX MEXaHM3MOB YCTPOICTB, & TAKkKe IPUMeHeHU I'MOKMUX CEHCOPOB
npeobpasosanust C 3JIeKTpUYECKIM IpeobpasoBaHmeM. Kpome Toro, B JaHHOM 0630pe pacCMOTPeHbI MeXaHU3MbI IIPeo6pa3oBaHMst HEKOTOPhIX
TUIMYHBIX Ipeo6pa3oBaresieii C aKLIEHTOM Ha JIeXAIyI0 B OCHOBe (p13MKy, BKIIOYAsT MOAY/ISIIVIO YPOBHS JIETMPOBaHus, 6a-
poep IIoTTKM U MeskdasHblit CI0i, KOTOPble 06BIYHO TPUBOIAT K M3MEHEHMSIM B ITPOBOAMMOCTY, paboueit GyHKIMU U I13-
JIEKTPUYECKOM TTPOHMUIIAeMOCTH. MbI TaK)Ke OCBEIaeM IMO0Ib3Y, TEXHUYECKME MPOGIEeMbI C COOTBETCTBYIOIIMMM PEIIeHUSIMU
COBpeMeHHbIX TMOKMX CeHCOPOB 1 06CYKIaeM TMOTeHIMabHbIe CTPaTerni /ISl IIPEOOIeHNsT OTpaHMYeHMIT B TOTPe6IeH
9HEepPruu, KOIMUYEeCTBEHHOM OMpeiesieHN!M TUTIOCOB M MYHYCOB B MO AePKaHMM KauecTBa U MOTPeGUTETbCKIUX CBOMCTB, OTITH-
MM3auuy 6ecIpOBOLHON CBSI3Y U M3y4YeHMsI HOBBIX CEHCOPHBIX ITaTTEPHOB.
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1. Introduction
1.1. How important is food safety?

The World Health Organization (WHO) pointed out [1] that contami-
nated food is responsible for causing an estimated 600 million people fall
ill globally, resulting in 420,000 deaths each year [1]. Over the past few
years, the increasing awareness among consumers about a healthy life-
style has sharply raised their familiarity towards food quality and safety
[2]. Food quality is a reliable indicator that relates to the consumption
needs and expectations of consumers. Common food quality includes
factors such as freshness, texture, ingredients, grading of physical ap-
pearance and so on. It can lead to taste, health, safety, and pleasure [3].
Food products with high quality are always expected and demanded by
consumers [4]. Food safety problems typically include chemical pollution,
microbial pollution, and physical pollution [2]. Bacteria, viruses, parasites
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and fungi existing in the environment may cause diseases of consumers,
and they can also easily contaminate the consumable food materials [5].
During the past decades, pesticides have been widely used for high yield
productions [6], while the increasing usage of various pesticides can lead
to high levels of residues in foodstuff and accumulation in the food chain,
which poses a huge threat to human health [7,8].

1.2. What are the key concerns in food monitoring?

With the globalization of economy and trade, and the rapid circula-
tion of various food products around the world, potential food contami-
nation, and fraudulent food manufacturing have prompted consumers
to pay more attention to the quality and safety of their food [9]. All this
has generated the urge to develop food monitoring systems that can
control and prevent food-borne illnesses, ensure consumer health and
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safety, and promote the development of the food industry. In recent years,
significant progress has been made in food quality and safety monitor-
ing based on traditional laboratory analysis and rigid sensor detection.
Food quality detection involves measuring various parameters such as
temperature [10], humidity [11], pH [12], flavor [13], multi-gas [14] and
freshness marking [15]. On the other hand, food safety monitoring in-
volves detecting microorganisms [16], pesticides [17], illegal additives
malachite green [18], melamine [19], antibiotic residues [20] and so on.
However, traditional rigid sensors exhibit several challenges in food
monitoring. First, the intrinsic mechanical non-conformability property
of rigid sensors makes them difficult to adapt to arbitrarily curved sur-
faces and shape changeable parts (or movable parts). Secondly, rigid sen-
sors are large, unbendable, and heavy, which makes effective integration
with detection targets difficult. Thirdly, rigid sensors may not maintain
consistent contact, resulting in inaccurate or unreliable data collection.
Finally, manufacturing process of rigid sensors is extremely complex and
contaminated, and they cannot be manufactured in individualized and
small batches [21,22].

1.3. Flexible sensing have emerged as a prominent technological
advancement in the realm of flexible electronics

Compared to conventional rigid sensors, flexible sensors play a crucial
role in the application of flexible electronics, which possess unique advan-
tages such as light weight, portability, great flexibility, stretchability, fold-
ability, and adaptability [23-25]. Flexible electronics refers to circuits and
electronic components that can retain their functions under circumstanc-
es of bending or stretching [26—28]. The concept of flexible electronics was
introduced in the 1960s when copper was patterned on polyimide, result-
ing in a reduction in the thickness of the solar cell from 400 to 100 pm and
leading to an unprecedented leap forward in power density [29-31]. Ever
since then, innovations in materials with greater flexibility and large pro-
cessability, such as conductive polymers [32-34], organic semiconductors
[35,36], and amorphous silicon [37,38], have gradually laid the foundation
for flexible electronics. With the rapid development of material science,
flexible electronics have recently ridden the wave of carbon nanotubes
[39,40], graphene platelets [41,42], precious metal nanomaterials (e. g.,
silver NWs, platinum NPs, etc.) [43,44,45], nanohybrid materials (e. g.,
CNT-PDMS composites) [46] and even optically transparent hydrogels
[24], which brings high sensitivity, fast response, low power consumption,
and long lifespan to flexible sensors. With the unique characteristics such
as ultrathin, low modulus, light weight, high flexibility, and stretchabil-
ity [47], flexible sensors precisely meet the needs in food monitoring: ac-
quiring multi-parameter information in a small space, a more reasonable
layout, providing data on packaging deformation [48], and conformably
attaching to the surface of the skin [47]. Simultaneously, the new gen-
eration of information technology represented by wearable Internet of
Things (W-IoT) [49], blockchain [50] and cloud computing, have generated
immense interest for the nascent flexible sensing because it can integrate
and connect personnel, processes, data, and equipment enabling the high
adaptability [51], high precision, multiple scale, dynamic non-destructive
monitoring [49]. Flexible sensing in food monitoring has become increas-
ingly significant in recent years [44,52,54,55], and is rapidly evolving in its
application scenarios [44,48,52,53,54,55], and manufacturing methodol-
ogy [44,53]. The synergy between flexible sensing and developments in
material science [26-46] and microfabrication technology has been in-
strumental in the success of both fields with innovations in one driving
progress and in the other.

In this review, we systematically discuss the configurations, sensing
mechanisms, and application of flexible sensors in food monitoring. First,
we summarize the basic architecture regarding flexible substrates, con-
ductive electrodes, and sensing materials focusing on the unique prop-
erties (e. g., mechanical, electrical, chemical properties, etc.) of materi-
als and the fabrication techniques. Secondly, we elaborate the sensing
mechanisms and transduction mechanisms of several typical transducers
(i. e., resistor, electrochemical sensor, and capacitor). Thirdly, we com-
prehensively discuss the applications of flexible sensors in the catego-
ries of physical, chemical, and biological aspects. Finally, we provide an
overview of the benefits and technical challenges of current flexible sen-
sors, and highlight the potential strategies to improve the performance of
state-of-the-art flexible food monitoring sensors.

2. Principle of food monitoring flexible sensors

To understand why sensitive detection of physical perturbations,
chemical analytes, and microbes can be realized in flexible sensors, and
how sensing materials work (e. g., resistive [58], capacitive [59], piezoelec-
tric [44,60], potentiometric [61], amperometric [62,63], impedimetric [63]
sensors, etc.), it is necessary to know the physics behind. A typical flexible

food monitoring sensor contains a flexible substrate, and two functional
components: a conductive interconnect/electrode [64,65,66,67] (herein-
after referred to as “conductive electrode”) which connect the transducer
and the output interface of data and an active sensing material-equipped
flexible transducer (i. e., transducing the concentration of analytes or a
physical perturbation, such as temperature, into an electrical signal). In
this section, we will systematically introduce the configurations, materi-
als, and working mechanisms of flexible sensors for food monitoring.

2.1. Flexible substrates

Flexible sensors have intrinsic characteristics including the abil-
ity to bend [44,51-55], fold [51,55], stretch [68,69,70,71], twist [72], and
even self-heal [56,73] if damaged. Flexible substrates are the main con-
tributor to the deformation dynamics of the sensors. Conventional rigid
substrates such as silicon [74], plastic [75], Al,O, [76], etc., have the ad-
vantages of simple structure, convenient preparation and reliable re-
sponsiveness. However, the rigidity hinders the capture of analytes and
results in poor signal transduction [77], which limits the performance
of conventional sensors. Flexible food monitoring sensors, whether at-
tached to the living organisms’ surfaces [44,52,55,78] or integrated inside
or outside of packaging [58], need to be lightweight, small, and easy to use
[67]. Flexible substrates, taking polymers as an example, are intrinsically
or molecularly stretchable materials, which use the materials themselves
to accommodate strain [79]. At the molecular level, mechanical softness
can be determined by two classifications: tailoring of the chemical struc-
ture (e. g., the lengths and composition of the side chains and rigidity of
the backbones) and tuning properties familiar to the polymer engineer-
ing community (e. g., molecular weight, polydispersity, and cross-linking)
[80]. The use of flexible substrates can greatly enhance the functionality,
durability, and versatility of flexible devices, making them ideal for use in
food monitoring. Among various materials used as substrates for flexible
sensors in food monitoring, polymers [51,58,81,82] dominate as the most
commonly employed base material, with a few exceptions using materials
such as paper [83], carbon paper [84], carbon cloth [84], and others [74].
In this section, we will discuss several typical types of polymer substrates
and paper-based substrates. Although paper and carbon-paper substrates
are infrequently used as substrate materials, we will introduce them to-
gether in the same section to provide an overview of their potential use.

2.2. Polymer substrates

In food monitoring, polymers represent the predominant substrate
material for flexible sensors, accounting for a significant majority of their
composition. In addition to high flexibility, adaptability and low cost,
polymer substrates offer a range of unique advantages for flexible sensor
components, including biocompatibility (e. g., PEDOT: PSS, HPU, PLA,
PDMS, PET, etc.) [63,85,86,87], elasticity (e. g., PDMS, PEDOT: PSS, HPU,
rubber, etc.) [44,58,63,88], and intrinsic stretchability (e. g., PEDOT: PSS,
PDMS, HPU, rubber, nitrile, etc.) [44,89,90]. Biocompatibility is highly ad-
vantageous for direct contact measurements between sensors and living
organisms; elasticity and intrinsic stretchability allow sensors to adapt
to irregular deformations of the analytes’ surfaces, obtaining more reli-
able data. The polymers used for flexible substrates can be classified into
the following categories based on their chemical structure and proper-
ties: (1) polyimide: PI (polyimide) [51,81,91]; (2) polyester: PET (poly-
ethylene terephthalate) [59,92], PEN (polyethylene naphthalate) [93]; (3)
polysiloxane: PDMS (polydimethylsiloxane) [44,58]; (4) biodegradable:
PLA (polylactic acid) [87]; (5) rubber: rubber [88], nitrile (nitrile rubber)
[89,90]; (6) polyurethane: HPU (hydrophilic polyurethane) [63]; (7) ep-
oxy: epoxy (epoxy resin) [82]; (8) polyethylene: PE (polyethylene) [82],
PVC (polyvinyl chloride) [58], OPP (oriented polypropylene) [62]. Herein,
we will discuss several typical polymers regarding their physical, chemi-
cal, and possibly biological properties.

Polyimide (PI): In the polymer family, polyimide (PI) has some notable
properties. For example, PI is a high-temperature resistant polymer, with
excellent mechanical and electrical properties. In the field of laser direct
scribing for flexible PCB [53,58,81], PI is a commonly preferred substrate
material due to its favorable properties. Xiao and his team [51] proposed
and developed a flexible battery-free wireless electronic system (FBES)
for food monitoring. The FBES was fabricated by laser direct scribing on
commercial PET/PI/Cu film. PI also has good chemical resistance and can
withstand exposure to many solvents and chemicals. Schoning et al. [94]
developed calorimetric gas sensors on PI films for more precise detection
of gaseous H,0, over a wide H,O, concentration range. In addition, the
nature of the PI chemical repeat units plays a key role in the fabrica-
tion of LDG electrodes [95]. Ever since it was first discovered in 2004 by
Geim and Novoselov, graphene has garnered significant attention from
the scientific community owing to its unparalleled properties [96,97,98].
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Figure 1. Flexible sensors application architecture. (A) Three typical categories of flexible electronics using physical, chemical,
and biological sensing mechanism, respectively. E-Skin: Adapted with permission [56]. Copyright 2022, Nature Publishing Group.
CLIPS: Cl-functionalized iontronic pressure sensitive material. Wearable electronics: Adapted with permission [57]. Copyright
2016, Nature Publishing Group. ISEs: Ion-selective electrodes. Flexible sensor: The PI film was patterned using laser scribing to
obtain 3D porous LIG. Then, liquid PDMS was drop-casted and heated for a specific period of time. Finally, the side of PDMS/
LIG was peeled off to obtain the stretchable LIG-based electrode. LIG: Laser induced graphene. (B) Summary of monitoring
indicators, materials, transduction mechanisms, etc., of three types of flexible sensors (i. e., physical, chemical, and biological)
used for food monitoring. (a) OP: Organophosphate. (b) PET: Polyethylene terephthalate, PDMS: Polydimethylsiloxane, PEN:
Polyethylene naphthalate, PLA: Polylactic acid, ITO: Indium Tin Oxide, OPP: Oriented polypropylene. (c) IDE: Interdigitated
electrodes, Tri-electrode: three electrode system, D-parallel lines: Double parallel lines, P-lollipop sheet: This is a new definition
here that refers to a flat shape resembling a lollipop. (d) PEDOT: PSS: Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate,
CAB: Cellulose acetate butyrate, SWCNTs: Single-walled carbon nanotubes, LSG: Laser scribed graphene, rGO: Reduced graphene
oxide, PPy: Polypyrrole, BP-Ti3C2-MXene: Two-dimensional phosphorene (BP) nanohybrid with graphene-like titanium
carbide MXene (MXene, 2D material, can be synthesized by etching “A” from MAX phase (“M” represents transition metals, “A”
represents group IIIA/IVA elements and “X” represents C and/or N elements)), p(D-co-M): poly(N-[3-(dimethylamino)propyl]-
methacrylamide-co-2-N-morpholinoethyl methacrylate), SPPM: SWCNT-PdNP-polystyrene microsphere, IrOx: ilridium oxide,
OPH: Organophosphorus hydrolase, NPs: Nanoparticles. (C) Timeline of major events in flexible electronics development. PAB:
Polyclonal antibody biosensor, TENG: Triboelectric nanogenerator.

PucyHOK 1. ApXxuTeKTypa NpuMMeHeHUsI TMOKUX CeHCOPOB. (A) Tpy TUNMYHBIX KATETOPUM I'MGKOI 3JIEKTPOHUKM C MICIIO/Ib30BaHMeM (hM3NYeCKOoro,
XMMMIYECKOro ¥ 6110/IOrMYeCcKOro CeHCOPHOro MeXaHn3Ma, COOTBETCTBeHHO. JineKkTpoHHas Koska (E-Skin): aganTupoBaHo ¢ paspemenns [56]. Copyright
2022, Nature Publishing Group. CLIPS: Cl- ¢pyHKIMOHAIM30BaHHbBI MOHTPOHHBII YYBCTBUTEIbHBIN K JaBIeHNI0 MaTepuan. Hocumast 3/IeKTpoHMKa:
amanTUpoBaHo ¢ paspeurenns [57]. Copyright 2016, Nature Publishing Group. ISEs: noHocenexkTusHbIe 3neKTpoabl. ['m6kuii cencop: Ilnenka PI 6pu1a
CTPYKTYpMPOBaHAa, UCIOJb3Ys JIa3epHoe CKpaiiGupoBanme 111 moiaydeHns 3D nopucroro LIG. 3aTem 6b11 HaHeceH Xuaxkuiit PDMS MeTo0M IMThsI KaruisiMu
¥ HarpeT B TeUeHNe omnpeaeIeHHOro nepuosa spemenn. Hakonen, 6pu1a otaenena cropoia PDMS/LIG fjis HOJTy4eHMsI pacTsDKMMOTO 37I€eKTPOa Ha OCHOBe
LIG. LIG: na3epHO-MHAYIMPOBaHHbII rpadeH. (B) KpaTkoe npeacrasieHie MOHUTOPMHIOBbIX MHAMKATOPOB, MaTepuaaoB, MEXaHM3MOB IIPeoGpa3soBaHmst
M T. . TPEX TUIIOB TUGKUX CEHCOPOB (T. €., husnueckuii, XMUMUIECKUI1 ¥ GUOTIOTUYECKUIT), UCIIOIb3yeMble /IS MOHUTOPHMHIA IUIIEBbIX MPOAYKTOB (a) OP:
opranodocdar. (b) PET: nommatunenrepedranar, PDMS: momuaumermiacuiokcad, PEN: monmatmwienHadranar, PLA: moiMonouHas kuciora, ITO: Okenp,
uHaNs-0noBa, OPP: opuenTupoBaHHbIii nonunpommieH. (¢) IDE: rpe6enuarsie amekTponsl, Tri-electrode: Tpex asekrpoguas cucrema, D-parallel lines:
IBOjiHBIe MapasuienbHbie TuHuUK, P-lollipop sheet: 3To HOBoOe omnpeesieHNe 3eCh, KOTOPOE OTHOCUTCS K IUIOCKOI opme, HATTOMMHAIOLIE JIeJeHel] Ha
nanouke. (d) PEDOT: PSS: momn(3,4- astmiieHanoreutnoden) nommcrupoicyiabdonar, CAB: arero6yrupar uesnnonao3bl, SWCNTS: ogHOCTeHHbIEe YIiIepOSHbIe
HaHOTPY6KH, LSG: 1asepHo-ckpaitGupoBaHHblii rpadeH, rGO: BoccTaHOBIeHHbI oKeuz, rpadeHa, PPy: noaunuppoi, BP-Ti3C2-MXene: HaHOrUGPUT,
nsymepHoro docdhopena (BP) ¢ rpadeno-nmogo6HsIM Kapougom turana MXene (MXene, 2D maTepuas, MOXKeT ObITh CMHTE3MPOBAH ITyTEM TPABIEHUS
“A” us a3t MAX (“M” npeacrasisieT co60ii epexoaHbie MeTalIbl, “A” peacTasisieT co6oii rpyminy ssemenTos IIIA/IVA u “X” npeacrasiseT co60ii
C u/umu N anemenTsr)), p(D-co-M): mom(N-[3-(ZMMeTUIaMMHO) IPONWII]| - MeTaKpWIaMNA-Ko-2-N-MmopdonnHosTuia merakpuiar), SPPM: SWCNT-PANP-
nosmmcTuposioBas mukpocdepa, IrOx: okena upuaus, OPH: docdhopopraunueckas ruaponasa, NPs: HaHouacTupl. (C) BpeMeHHas HIKa/Ia OCHOBHBIX
COOBITHIT B pa3paGoTKe rMGKOii 3;IeKTPOHUKN. PAB: 61oceHCOp MOMMKIOHAIbHBIX aHTUTeN, TENG: Tpr6031eKTpUIecKuii HAaHOTeHepaTop

521



Luo D. et al. | FOOD SYSTEMS | Volume 6 No 4 | 2023 | pp. 519-530

Gomes et al. [99] developed an impedimetric immunosensor based on LIG
electrodes functionalized with specific antibodies for the detection of
Salmonella enterica using laser-induced porous graphene produced from
PI, showing potential in the sensing field.

Polyethylene terephthalate (PET): PET has gained widespread popu-
larity as a platform for food monitoring sensors, owing to its excellent
mechanical properties (i. e. bendability, durability, etc.) [100], low cost,
commercial availability [59], and outstanding adhesion with nanowires
(mixed with PDMS, ZnO, etc.) [100] and functional ink materials (silver-
nanoparticles ink) [59]. Duan et al. [100] developed a flexible ammonia
sensor with highly aligned conducting polymer nanowires fabricated by
a capillary filling-based soft lithography technique on a PET substrate.
Owing to the PET substrate’s superior mechanical stability and adhesion
ability to nanowires, after 1200 bending cycles, no physical damage to
the sensing material (flexible nanowire) was caused by mechanical fa-
tigue failure of the substrate, which could have resulted in unfavorable
resistance changes of a sensor. Rooij et al. [59] developed humidity sen-
sors equipped with planar interdigitated electrodes (IDE) capacitors. The
extraordinary adhesion between silver ink and PET substrate permitted
the growth of thicker (up to 15 um) layers of Ni on substrate. However,
PET substrates are unsuitable for stretchable sensing platforms due to
their relatively higher tensile strength (2-4 GPa) [65,67], and high tem-
perature (>100 °C) [101] material processing is not possible on it because
of less thermal stability.

Polydimethylsiloxane (PDMS): PDMS is a commonly used flexible sub-
strate material of flexible sensors for food monitoring due to its unique
mechanical properties [102], remarkable transparency (under visible
spectrum) [58], extraordinary biocompatibility, and resistance against
chemicals such as water and the majority of alcohols and bases [58]. Esc-
obedo et al. [58] fabricated a smart strain tag through injecting an ac-
tive material into a microchannel made from PDMS. This flexible strain
sensor exhibited a considerably good performance with an average gauge
factor of up to 13000, and an average degree of hysteresis (DH) within
the range of < 9%. PDMS was also applied as a protective layer for flexible
PCB (preventing the oxidation of the Cu circuit) [51] and NFC tag (encap-
sulating and protecting against moisture, liquid, etc.) [58]. Xia et al. [44]
fabricated a flexible dual-mechanism pressure sensor, where PDMS was
employed as the substrate due to its exceptional elasticity, as well as the
cross-linking matrix due to its chemical stability and low relative permit-
tivity. This sensor demonstrates a long-term stability of over 5000 pres-
sure cycles and exhibits satisfactory linearity, repeatability, and stability
when detecting pressures in the range of 0-100 kPa.

2.3. Paper-based substrates

Just like the knight Edgar, who has fewer appearances but is essential
in Shakespeare’s King Lear, paper-based substrates also play a crucial role
in the fabrication of flexible food monitoring sensors. Paper-based sub-
strates possess excellent properties including flexibility [109], breathabil-
ity [66], hygroscopy [110], ionic conductivity modulation [110] and easily
forming cross-linked structure with nanosized sensing materials [83],
which makes them ideal for use as a lightweight, low-cost, recyclable,
biocompatible starting substrate [83,111]. Tang et al. [83] designed a pa-
per-supported H,S sensing electrode through loading CuxO-polypyrrole
conductive aerogel (CuxO-PPy). The flexible electrode exhibits excellent
H,S sensing and egg spoilage monitoring performance owing to the syn-
ergetic effect between the different components and 3D porous architec-
ture. Padalkar et al. [84] developed a ZnO-based biosensor on flexible and
porous carbon paper/ cloth to detect organophosphates (e. g. paraoxon).
Due to the three-dimensional substrate and the morphology of the nano-
materials, the path length for charge carriers was significantly reduced,
leading to a decrease in recombination losses and an increase in electri-

cal conductivity. As a result, the device exhibited higher sensitivity and
lower LOD values. Table 1 summarizes the mechanical, physicochemical
and thermal properties of the four most used materials of substrates in
fabrication of food monitoring sensors [104,105].

2.4. Conductive electrodes

Conductive electrodes play a crucial role in the fabrication of flex-
ible sensors [67,118]. The function of the conductive electrode is to col-
lect electrical signals from the sensor and transmit them to a proces-
sor or other circuit for analysis and processing. They are usually made
of conductive materials such as metal nanoparticles/nanowires (i. e. Au
[100,113], Ag [58], Ni [59], etc.), conductive ink compound (e. g., Ag/Cl
ink, carbon ink, etc.) [114], conductive polymer (e. g. PEDOT: PSS [63],
polypyrrole [83], etc.), laser-derived graphene (LDG) [91,99], graphene-
carboxymethyl cellulose(G-CMC) [119], etc. The design and fabrication of
conductive electrodes have a significant impact on the performance and
sensitivity of sensors.

The fabrication of conductive electrodes and device arrays have been
investigated via three different approaches:

1. flexible electrodes were fabricated with a micrometer-scale thick-
ness [59] using non-stretchable materials such as metal [58,100,113],
polymer [91,99], and paper [83] through various processing techniques
including inkjet printing [59], screen printing [87], laser irradiation [92],
photolithography [113], etc.;

2. stretchable electrodes were obtained by intrinsically stretchable
materials (e. g. PEDOT: PSS [63] and polypyrrole [83]);

3. stretchable electrodes were developed through i) geometric engi-
neering of non-stretchable but flexible materials and ii) mixing conduc-
tive ink with intrinsically stretchable polymers such as silicone elastomer
and polystyrene-block-polyisoprene-block-polystyrene (PS-PI-PS) [90].

Molina-Lopez et al. [59] developed a functional humidity sensor with
planar interdigitated electrodes (IDE) using an all-additive approach.
They achieved this by ink-jetting the silver nanoparticle ink onto a PET
substrate and electrodepositing nickel on silver with nickel thickness
ranging from a few hundred nanometers to 15 uym on PET. High sen-
sor stability was obtained by passivating printed silver electrodes with
nickel. This prevented silver from oxidizing or releasing any possible
trapped organic residue after interacting with humidity, and also pro-
vided extra stiffness to reduce strains on the electrode plane. Escobe-
do et al. [58] fabricated a strain sensing tag by injecting intrinsically
stretchable conductive polymer PEDOT: PSS into the microchannel
shaped by a copper mold in a PDMS substrate. Mishra et al. [90] de-
signed a wearable organophosphorus (OP) glove biosensor via printing
Ag/AgCl and carbon-based serpentine structures on the glove. This ex-
cellent geometric structural design allows the electrode to withstand
extreme mechanical deformations while detecting organophosphate
(OP) nerve-agent compounds on suspicious surfaces and agricultural
products. Table 2 summarizes the materials, fabricating methods and
geometry forms of conductive electrodes in fabrication of flexible sen-
sors for food monitoring.

3. Flexible sensing materials

Flexible sensors require the integration of various crucial compo-
nents, including sensing materials that can be incorporated within or
stacked onto flexible substrates [120]. Sensing materials play a vital
role in the performance of flexible devices [67], enabling them to detect
and respond to stimulation of analytes or physical perturbation. The
electrical and physicochemical properties of sensing materials deter-
mine the sensitivity, stability, and selectivity of the sensors. Therefore,
the development and incorporation of advanced sensing materials are
essential for the fabrication of flexible sensors. Conventional sensing

Table 1. Summary of the mechanical, physicochemical and thermal properties of typical flexible substrates used in food monitoring sensors

Tabmuua 1. KpaTkoe npencraBieHie MeXaHUUeCKNX, (PM3MKO-XMMIUYECKUX U TEPMMYECKUX CBOVICTB TUIIMYHBIX TIMOKUX CYGCTPATOB,
VICITIO/Ib3YEMBIX B CEHCOPAX JJIsI MOHUTOPVHTIA MUILEBBIX IIPOJYKTOB

I T LT e ————

PI Flexible 2-3x10° 70-150 Resist temperature (<450°C) Weak aclds, Low e
e e w0 el Dsoben g oui
PDMS Stretchable 1.8" 6.7 Resist temperature (<100°C) Ethanol and (Eggﬁ/;) [106,107]
Paper Flexible 2.1-2.8x10° 40-60 Resist temperature (<100°C) No No [101,108]

® PI: polyimide; PET: polyethylene terephthalate; PDMS: polydimethylsiloxane; » SYLGARD184 silicone elastomer.
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Table 2. Materials, fabricating methods and geometry forms of conductive electrodes in fabrication of food monitoring sensors
Ta6m/1ua 2. MaTepMaﬂbl, MeTOIbI U3rOTOBJIEHUS U TeOMeTpu4YecKue d)Oprl IIPOBOIAIINX 3JIEKTPOAOB IIPU U3rOTOBJIEHMM CEHCOPOB IJII MOHUTOPMHIa

MNUIIEBBIX MPOAYKTOB

Analyte§/Mon1§0rlng Materials? Methods of fabrication® Geometry forms® Ref.
indicators®
Temperature Silver conductive paste Stencil printing Planar serpentine structures [58]
1 Ag NPs ink Inkjet printing
Humidity Ni Electroplating IDE (591
PDMS Spinning coating
Pressure Ag NWs Drop-casting Planar sheet [44]
Strain PEDOT: PSS Injecting Nanowire [58]
H,S Cu Commercial Cu foil Planar sheet [83]
Au, Cr e-beam evaporation
IrOx Sol-gel process Planar dguﬁfnflectrode [81]
Ag/AgCl Electroplating th
PH I
Laser exfoliating and .
ITO Evaporating patterning Planar lollipop sheet [61]
PDDA-IrOx LbL IJP and alternate deposition Planar sheet [60]
Sulfonamides LIPG Laser scribing Three-electrode system [112]
NH, Au Evaporating through copper shadow mask IDE [100]
ITO Photolithography
Isoprene and H,S Au Magnetron sputtering IDE [113]
Ag-OPP cathode Commercial available silver-deposited OPP film
0, Zinc anode Commercial available zinc film Planar sheet [62]
Heavy metal Cﬁgr{)%hcggr?éﬁg{senilrlfk Printing Planar array [114]
. Carbon ink Screen printing B
Pesticides ‘Ag/AgCl Coating Three-electrode system [87]
LIPG Laser scribing Three-electrode system [115]
Carbon ink and CSS/PCBN Screen printing and drop-casting Three-electrode system [88]
ZnO nanostructures and Ag/AgCl Electrodepositing Three-electrode system [84]
H,0, PEDOT: PSS/HPU/HRP Screen printing Three-electrode system [63]
LSG Laser irradiation
Ag/AgCl Electrodeposition Three-electrode system [92]
Co, Carbon black Printing Planar double parallel lines [116]
Ethylene gas Gold foil Laser direct writing IDE [117]
Ecoflex, carbon ink, . Three-electrode system with
op and PS-PI-PS Screen printing serpentine structures [90]
Biogenic amines LSG Laser scribing Three-electrode system with [91]
Salmonella enterica LSG Laser scribing Planar lollipop sheet [99]

¥ OP: Organophosphate.

Y Ag NPs: Ag nanoparticles, Ni: Nickel, PDMS: Polydimethylsiloxane, Ag NWs: Ag nanowires, PEDOT: PSS: Poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate, IrOx: Iridium oxide, ITO: Indium Tin Oxide, PDDA: Polydiallyldimethylammonium, LIPG: Laser induced porous graphene, OPP: Oriented poly-
propylene, CSS: Carbon spherical shells, PCBN: Printex carbon nanoballs, HPU: Hydrophilic polyurethane, HRP: Horseradish peroxide, LSG: Laser scribed
graphene, Ecoflex: Ag/AgCl ink with platinum-catalyzed silicone elastomer, PS-PI-PS: Polystyrene-block-polyisoprene-block-polystyrene.

9 LBL IJP: Layer-by-layer inkjet printing.

9 IDE: Interdigitated electrodes, Planar lollipop sheet: This is a new definition here that refers to a flat shape resembling a lollipop, formed by a combination

of a circle and a rectangle.

materials are modular, generally semiconducting and conducting in-
herently, changing their electrical properties upon exposure to various
application scenarios [67]. Although their electronic performance ex-
hibits high carrier mobility and stability, compared to novel nanoma-
terials such as conductive polymers, they show weaknesses in physical
and chemical properties: high Young’s modulus, poor controllability
and tunability of chemical composition and molecular structure [120].
The sensing materials need to be lightweight, low-cost, and well com-
patible with large scale processing [67]. With advancement in nano-
technology, carbon nanomaterials [67,121], conductive polymers [122],
nanohybrid materials, metal nanomaterials (e. g., AuNPs, BiNPs, etc.)
[114] have been demonstrated to be promising sensing materials in
flexible electronics applications. Numerous materials such as laser-
scribed/induced graphene (LSG/LIG) [92,95,99,123,124,125], laser-
induced porous graphene (LIPG) [112,115], graphene-CMC (carboxy-
methyl cellulose) [119], SWCNT-PdNP-polystyrene microsphere (SPPM)
[117], carbon spherical shells (CSS) [88], CuxO-PPy@GO aerogel [83],
PEDOT: PSS [44,58,126,126,128], poly(N-[3-(dimethylamino)propyl]-
methacrylamide-co-2-N-morpholinoethyl methacrylate) (p(D-co-M))
[116], Ti3C2-MXene/BP nanohybrid [112], AuNPs [114], iridium oxide
(IrOx) nanoparticles [60], etc., have exhibited remarkable performance
in various research settings. In this section, we focus on three catego-
ries of nanomaterials: carbon nanomaterials, conductive polymers, and

nanohybrid materials. The electrical, physical, mechanical, and chemi-
cal properties, fabrication methods, and sensing mechanisms of sensing
materials are explained.

3.1. Carbon nanomaterials

The unique electronic, mechanical, and chemical properties of car-
bon nanomaterials make them very interesting for developing the new
generation of miniaturized, low-power, ubiquitous sensors [121,129].
Low-dimensional carbon structures, with the majority of their atoms ex-
posed to the surroundings, provide a large specific surface area that can
be advantageous in achieving high sensitivity [121,130]. In the last few
years, nanomaterials like carbon spherical shells (CSS), single-walled car-
bon nanotubes (SWCNTSs), laser-scribed graphene (LSG), laser-induced
porous graphene (LIPG), laser-scribed graphene oxide (LSGO), reduced
graphene oxide (rGO), etc., have become the most studied carbon-based
materials for developing food monitoring sensors. In this part, we will
discuss two types carbon-based nanomaterials systematically.

Single-walled carbon nanotubes (SWCNTs): After their discovery
in 1991 by lijima and Ichihashi, carbon nanotubes (CNTs) have been
extensively researched for their unique electrical, physical, mechani-
cal, and chemical properties in the development of high-performance
sensing devices [131]. Sensors equipped with SWCNTs exhibit revers-
ible stretchability, fast response and substantially higher sensitivity at

523



Luo D. et al. | FOOD SYSTEMS | Volume 6 No 4 | 2023 | pp. 519-530

room temperature [66,132], owing to their high carrier mobility, excellent
physical properties, ease of modification, and sizeable surface-area-to-
volume ratio, which provides a huge number of active sites for analytes
[133,134,135,136]. Yan et al. [117] developed a flexible paper-based che-
moresistive sensor by modifying a SWCNT-PANP-polystyrene micro-
sphere (SPPM) composite (SPPM/FWPCS) for the low-cost and online
detection of C,H, from banana. SWCNT-PdNP-PM composites were syn-
thesized by a method of self-assembly under van der Waals forces, and
then was pipetted on the sensing area of the interdigitated electrodes and
dried at room temperature. The sensing mechanism involves the release
of trapped electrons due to the oxidation and cleavage of ethylene, re-
sulting in a decrease in resistance. More specifically, the Schottky barriers
between SWCNTs, PdNPs, and adsorbed oxygen in the sensing composite
create an electron depletion layer, and adsorbed oxygen (O,-) is formed
during the process. The concentration of C,H, can be detected down to
100 ppb (subppm level). The detection range of a rigid sensor is the total
amount of ethylene in the entire space, which, coupled with diffusivity of
gases, leads to hysteresis for the monitoring of fruit ripeness and corrup-
tion. Flexible sensors can be used to overcome this limitation by placing
them inside fruit packaging.

Laser-scribed graphene (LSG): The discovery of graphene in 2004 by
Geim and Novoselov generated great scientific interest because of its
excellent properties [137-141], including rapid electron mobility, self-
assembly behavior, excellent conductivity, large specific surface area,
high mechanical strength and stability, etc. [141-149]. Graphene is a
single layer of sp2-hybridized carbon atoms covalently bound together
in a honeycomb lattice [140]. First, its outstanding electronic proper-
ties, such as high carrier mobility and high carrier density, make it a
promising candidate for fabricating high-performance electrically-
transduced analytical devices [64,148]. Secondly, the surface prop-
erties of graphene enable it to interact with a wide range of analytes
through different mechanisms such as van der Waals forces, electron
transfer, or covalent bonding [140,149], which can lead to changes in
the conductivity of the sensing layer. Thirdly, graphene’s high surface-
to-volume ratio implies that each carbon atom in graphene functions
as a surface atom, resulting in the maximum possible surface area per
unit volume. As a result, the charge transport in graphene is extremely
sensitive to its chemical surroundings [149,150]. Fourthly, flexible elec-
tronic devices often undergo mechanical stress and deformation during
operation, so they require materials that can withstand these stresses
without breaking or losing their functionality. Graphene, which has
high mechanical strength and stability, is therefore a promising mate-
rial for use in flexible electronic devices. By using graphene as a base
material, flexible electronics can be designed with improved durability
and reliability, even under harsh operating conditions [146,151]. Tradi-
tional methods for producing graphene, such as thermal decomposition
[152,153], mechanical exfoliation [154,155], and chemical vapor depo-
sition (CVD) [156,157] are time-consuming and complex. In contrast,
laser-derived graphene (LDG) technology offers an easy, mask-free, and
low-cost alternative for the production of graphene-based materials.
The products are now mainly termed laser-scribed graphene (LSG) or
laser-induced graphene (LIG), etc. [95]. Aparicio-Martinez et al. [92] de-
veloped a novel, flexible and non-enzymatic electrochemical H,0, sen-
sor based on a laser-scribed graphene (LSG) electrode decorated with
silver nanoparticles (LSG-Ag). They fabricated a graphene electrode on
a PET substrate that was coated with GO, using a 780 nm 5 mW infra-
red laser from a DVD unit. And then, they decorated the LSG electrode
with silver nanoparticles (LSG-Ag). The changes in morphology caused
by the laser treatment, such as increased roughness, expansion, surface
defects, and exposure of edge planes, have a significant impact on the
electrochemical performance of the material [123,158,159]. Specifically,
during silver electrodeposition, defects and features of LSG acted as nu-
cleation sites and induced a high density of non-spherical nanoparticles
(sizes from 70 to 120 nm) with uniform distribution over the LSG layers.
The sensing mechanism of this amperometric sensor can be described
as follows: the sensing material’s role is to interact with the analyte
through the active sites on its surface, while the electrode is maintained
at a fixed potential and the cathode current is monitored over time. The
cathode current magnitude is related to the concentration of the ana-
lyte present. The morphology features of LSG such as 3D architecture,
surface defects, exfoliation, edge plane exposure and oxygen removal
were combined with the electrocatalytic activity of AgNps, resulting in
an overall enhanced non-enzymatic H,0, detection. The LSG-Ag sensor
demonstrated low LOD of 7.9 uM, rapid amperometric response within
3 seconds, as well as high repeatability of 3% R.S.D. and reproducibility
of 4.5% R.S.D. It also showed minimal loss of performance even after
continuous bending.

3.2. Conductive polymers

Conductive polymers (CPs) have been acknowledged as a distinctive
category of organic materials possessing exclusive electrical and opti-
cal characteristics comparable to those of inorganic semiconductors and
metals [160]. CPs can be synthesized through simple, versatile, and cost-
effective methods. Furthermore, they can be easily assembled into supra-
molecular structures with multifunctional capabilities through electropo-
lymerization processes [161]. The development of various methodologies
has enabled the modification and tuning of CPs to incorporate them into
the fabrication of stretchable sensors, which include both physical and
electrochemical sensors. Such novel innovations are highly desired and
sought after in various fields of flexible sensing, including temperature
monitoring, strain sensing, and the high-sensitivity active gas sensing
(e. g., H,S), as they hold the potential to pave the way for future break-
throughs. Conjugated m polymers are a class of materials with electrons
held in their backbones [162], such as poly(3,4-ethylenedioxythiophene)
(PEDOT) and polypyrrole (PPy). The unsaturated backbone of conductive
polymers allows for the delocalization of m-electrons, which facilitates
the movement of charge carriers along an electrical pathway [163,164].
Flexible sensing materials that incorporate CPs exhibit RT-sensing ca-
pabilities and ease of chemical modification. Specifically, the high flex-
ibility of polymeric materials enables the sensing materials to be easily
deposited or patterned onto flexible or stretchable substrates, and they
can withstand mechanical deformation during use, thus maintaining the
integrity of the sensing layer [67]. As typical examples of conductive poly-
mers, PEDOT: PSS and polypyrrole (PPy) will be discussed here.

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:
PSS): polythiophene is a fascinating material due to its persistent conduc-
tivity and impressive electrical conductivity (103 S cm™), which is influ-
enced by the dopant and polymerization type [165,167,167]. PEDOT can
be polymerized through electrochemical or oxidative chemical methods,
and it is a polymer with high electrical conductivity [160]. Compared to
PPy, PEDOT possesses superior chemical [168-170] and thermal [170]
stability and has been postulated for possible use as an interfacing agent
[160]. PEDOT can be hybridized with poly(styrenesulfonate) (PSS) to im-
prove electrical conductivity [171]. PSS was used for doping the PEDOT for
film fabrication by spin coating and vapor phase polymerization [160]. The
conductivity mechanism of PEDOT: PSS is based on the synergistic effect
between PEDOT and PSS, where PEDOT serves as the conductive backbone
providing the pathway for electron transfer, while PSS acts as the electro-
lyte stabilizing the polymer chains of PEDOT and regulating the conduc-
tivity. The highly ordered hybridization between PEDOT and PSS results
in PEDOT: PSS composite materials with high conductivity. Conductive
polymers are a popular choice for temperature sensing due to their ease
of processing and excellent electrical properties, although they may be un-
stable at high temperatures [172]. However, PEDOT: PSS stands out as one
of the most stable organic conductive polymers with electrical properties
similar to those of a metal or semiconductor [173,174]. Escobedo et al. [58]
designed a temperature sensing tag by printing silver electrodes on a flex-
ible polyvinyl chloride (PVC) substrate and then drop-casting PEDOT: PSS
on silver electrodes with a gap of 2 mm. With an increase in temperature,
the mobility of carriers within the sensing layer is predicted to rise, result-
ing in a decrease in resistance. This PEDOT: PSS based temperature sensor
showed a 70% change in resistance for a temperature change of ~60 °C. Ja-
copo et al. [79] developed a dual-mode highly flexible hydrogel-based H,0,
sensor, which is based on poly (3,4-ethylenedioxythiophene): polystyrene
sulfonate (PEDOT: PSS) as the transducer, hydrophilic polyurethane (HPU)
as the hydrogel matrix, and horseradish peroxide (HRP) as the H,0, spe-
cific redox enzyme. The solution containing PEDOT: PSS/HPU/HRP was
applied onto the work electrode of a three-electrode system using a drop-
casting method. The sensor operated in both amperometric and chemire-
sistive dual modes. The sensing mechanism can be explained as follows.
In the amperometric mode, H,0, undergoes electrochemical reduction in
the presence of HRP to produce water and oxygen on the surface of the
modified electrode [175]. The process entails the alteration of the oxida-
tion state of the iron ion within the heme group present in HRP, result-
ing in the discharge of electrons that are subsequently transmitted to the
electrode, thereby inducing a current peak [176,177]. Conductive PEDOT:
PSS plays a key role in the direct electron transfer between the enzyme and
the electrode [178]. In the chemiresistive mode, the sensing mechanism
relies on the conformational change of PEDOT between two molecular
structures, quinoid and benzoid, in response to H,0,. The quinoid group,
which has alternating double bonds and more charges, is more conductive
form leading to an increase in PEDOT: PSS conductivity. The change to the
fibrillary-like structure of quinoid increases the delocalization of charges
and m-electrons in the PEDOT backbone, resulting in higher conductivity.
The conformational change to the coil-like benzoid structure reduces elec-
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tron mobility [126,179]. The HRP and H,0, reaction initiates the PEDOT
conformational change to the quinoid structure, resulting in higher con-
ductivity [178]. The amperometric sensor showed a rapid response time of
less than 6 seconds, selectivity towards common interferents, and a broad
detection range spanning from 100 uM to 101.6 mM.

Polypyrrole (PPy): PPy can be traced back to the 1919 studies by Angeli
and Pieroni, who described the synthesis of pyrrole blacks from pyrrole
magnesium bromide [180]. PPy is unique among the electronically con-
ductive polymers in that the pristine form is oxidized by molecular oxygen
[181]. PPy exhibits impressive conductivity, outstanding redox properties,
biocompatibility, tunability and processability, as well as environmen-
tal stability, and could be widely applied in the field of chemical sensing
[182,183,184]. Conductive polymer aerogels are considered a promising
option to create versatile electronics due to their mechanical deform-
ability and their 3D porous structures [185]. Compared to conventional
porous materials, conductive polymer aerogels possess advantages such
as regulated conductivity, low density, large specific surface areas, and in-
terconnected channels, making them suitable for gas sensing applications
[83]. Shu et al. [83] developed a paper substrate-based flexible H,S sensor
by incorporating CuxO-polypyrrole conductive aerogel (CuxO-PPy) into
the sensor design. The aerogel is prepared by in situ polymerization of
pyrrole with a “big-macromolecular surfactant” of graphene oxide (GO).
GO is composed of both aromatic regions consisting of benzene rings and
aliphatic regions consisting of oxygen-containing groups, which give it
amphiphilic properties [186]. The surface of graphene oxide was improved
by the self-assembly of positively charged pyrrole monomers through m-mn
stacking and electrostatic interactions, resulting in a better pyrrole dis-
persion. Additionally, the 3D porous structure of the coated aerogel was
maintained on the paper substrate, and due to the combined mechanical
properties of the aerogel and paper, the resulting paper electrode was me-
chanically flexible and could be easily cut into desired shapes. The sensing
mechanism of this chemiresistive gas sensor can be speculated as follows.
First, when the sensor was exposed to H,S, some of the absorbed gas mol-
ecules dissociated into H* and S,” (HS-). Secondly, the S,- readily reacted
with semiconducting CuxO, transforming it into metallic CuxS with good
conductivity [187,188]. This process facilitated the continuous dissocia-
tion of H,S molecules, generating more H' ions. Thirdly, the dissociated
H+ ions protonated PPy, serving as the host conducting pathway, and
facilitated electron transfer through multidimensional paths, including
2D nanosheets and 3D cross-linking frameworks, ultimately improving
conduction [189]. The CuxO promoted the protonation of PPy. Fourthly,
the aerogel’s inherently hierarchical and porous micro-nanostructures
of CuxO-PPy@GO, with a large surface area and pore volume, provided
abundant reaction sites (such as vacancies, defects, functional groups,
and sp2-bonded carbon) for gas molecule adsorption [190]. Moreover, the
loose and porous structure facilitated rapid gas diffusion and worked si-
multaneously on both the internal and external surfaces. Overall, the ex-
ceptional sensing performance was attributed to the synergistic function
of the micro-nanostructures, the strong chemical interaction between
CuxO and H,S, and the effective proton acid doping with PPy.

3.3. Nanohybrid materials

Nanohybrid materials are distinct combinations of inorganic and or-
ganic materials [191]. Compared to single-component materials, hybrid
materials possess a diverse range of functionalities as well as enhanced
chemical and physical properties. Advanced nanostructures that are
based on organic/inorganic composites play a significant role in driv-
ing innovations across various fields [192,193]. Hybrid materials exhibit
enhanced properties such as higher conductivity, increased porosity,
improved catalytic activity, and greater optical and electrical poten-
tial compared to their single-component counterparts [194,195]. When
polymeric materials are combined with metal oxides or other inorganic
materials, the resulting composite can exhibit enhanced selectivity and
unique sensing properties. This is due to the synergistic and geometrical
effects of the different components [196,197]. Polymer materials and 2D
graphene-based materials have been shown to have a large surface area
and good electrical conductivity, but the performance of these devices
can be further improved by synthesizing nanohybrid materials.

BP-Ti3C2-MXene: Zhu Xiaoyu et al. [115] designed an ultra-trace
analysis phytoregulator a-naphthalene acetic acid (NAA) sensor fabri-
cated by two-dimensional phosphorene (BP) nanohybrid with graphene-
like titanium carbide MXene (Ti3C2-MXene. MXene, 2D material, can be
synthesized by etching “A” from MAX phase (“M” represents transition
metals, “A” represents group IIIA/IVA elements and “X” represents C and/
or N elements)) on the flexible substrate surface of laser-induced porous
graphene (LIPG). A BP-Ti3C2-MXene nanohybrid with excellent ambient
stability is produced through liquid-phase exfoliation of black phospho-

rus with cuprous chloride and Ti3C2-MZXene, which is obtained by etch-
ing Al layers of Ti3AlC2, using ultrasonic assistance in an organic solvent.
MXene has a unique thin-layered nanostructure that provides ample
space for supporting other functionalized nanomaterials. However, the
performance of MXene is compromised when its nanosheets restack too
severely, which can damage the effective area [198]. To address this issue,
a noncovalent nanohybrid between BP and MXene is expected to resolve
the aggregation of MXene or BP and combine the advantages of both ma-
terials [199]. The sensing mechanism of this electrochemical sensor is as
follows. In the amperometric mode, the working electrode modified with
Ti3C2-MXene/BP biomimetic enzymes exhibits oxidase-like characteris-
tics (nanozyme) when the zymolyte NAA is electrocatalytically oxidized.
Electron transfer reactions generate measurable changes in current.
Since the size of the measured current is proportional to the number of
NAA molecules in the solution, the relative concentration of the mol-
ecules can be monitored on a physiological timeline [200]. The LOD of the
sensor is as low as 1.6 nM with a wide linear range of 0.02-40 uM.

4. Principle of flexible sensing

The sensing layer of a flexible sensor interacts with physical distur-
bances or analytes, causing changes in its own physical properties, which
are then transduced into variations of electrical signals (e. g., current,
voltage/ Nernst potential, capacitance, etc.) or others by the transducer.
In this section, we will discuss the sensing principle of electrically-trans-
duced analytical flexible sensors from the aspects of sensing and trans-
duction mechanisms.

4.1. Sensing mechanism

A typical sensing device consists of two primary elements: sensing
material and the transducer [201]. The sensing material is accountable for
responding to physical perturbation (e. g., temperature, humidity, pres-
sure, mechanical deformation, etc.) or chemical/biological analytes (e. g.,
gases, pesticides, foodborne pathogens, etc.). This interaction results in a
modification of one or more properties of the sensing material, which is
subsequently transformed into detectable signals by the transducer [202-
204]. Sensors capable of detecting physical changes have been achieved
through the collaborative advancements in material development, in-
volving the synthesis of materials with novel electrical, optical, and me-
chanical properties and refinement in the methods of integrating mate-
rials into devices [205]. In contrast, to advance electrically-transduced
chemical sensing, there is an added level of complexity posed by the
chemical interfaces between the sensing material and the analyte [201].
The chemical interfaces between the material and the analyte are crucial
in determining the sensitivity, selectivity, stability, and biocompatibility
of chemical sensing devices [206—208]. The interaction between sensing
materials and analytes is a prerequisite for the operation of sensors.

We can classify these interactions as:

1. Non-covalent interactions, including van der Waals forces, hydro-
gen bonds, coordination bonds, and m—1 interactions.

This may result in reversible or partially reversible reactions. For ex-
ample, the large, electron-rich m—surface of graphene can interact with
target analytes through van der Waals forces, charge transfer, and n-m
interactions.

2. Covalent bonding.

This leads to irreversible reactions but brings improvements in selectiv-
ity and sensitivity. For example, metal oxides contain chemically adsorbed
oxygen molecules on their surface, which are responsible for the interaction
with gaseous analytes through oxygen-involved chemical reactions [64].

4.2. Transduction mechanism

The sensing material serves a dual purpose in chemical sensing. Firstly,
it should have the ability to covalently or noncovalently interact with the
analyte on its surface. Secondly, it should react to this interaction by al-
tering its electrically related physical properties. The transduction mecha-
nism relies on conductivity, work function, or electrical permittivity, which
can be transformed into a change in resistance, capacitance, or inductance
[203]. These transduction events, which involve changes in resistance/im-
pedance, capacitance, current, and voltage/electrical potential, can be de-
tected and measured using various devices such as resistors, electrochemi-
cal sensors, capacitors, diodes, and field-effect transistors. The magnitude,
frequency, and phase of the resulting signal can provide important infor-
mation about the sensing event [64]. In flexible sensing for food monitor-
ing, the main transducers are resistors and electrochemical sensors, while
capacitors are uncommon. Diodes and field-effect transistors are rarely
seen. The modulation of doping level, Schottky barrier, and the formation
of dipole and interfacial layer are the basic mechanisms that typically lead
to changes in conductivity, work function, and permittivity [64].
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