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A BST R ACT
Monitoring and maintaining food quality, safety, and authenticity are the most important concerns in the food industry. The 
cutting-edge flexible sensors for food monitoring precisely meet the needs of acquiring information on multiple parameters in 
small space and more reasonable layout, providing data on mechanical deformations, and conformably attaching to arbitrarily 
curved surfaces. Flexible sensing materials with a large specific surface area, high carrier mobility and carrier density, dense 
active sites, outstanding tunability, and processability, such as two-dimensional carbon nanomaterials, conductive polymers, 
and nanohybrid materials, have further improved the sensitivity, stability, and selectivity of flexible sensors. This article 
attempts to critically review state-of-the-art developments with respect to materials, fabrication techniques, and sensing 
mechanisms of devices, as well as the applications of the electrically-transduced flexible sensors. In addition, this review 
elaborates on the transduction mechanisms of several typical transducers, with a focus on the physics behind, including the 
modulation of doping level, Schottky barrier, and interfacial layer that typically lead to changes in conductivity, work function, 
and permittivity. We also highlight the benefits, technical challenges with corresponding solutions of current flexible sensors, 
and discuss potential strategies to overcome limitations in energy consumption, quantify the trade-offs in maintaining qual‑
ity and marketability, optimize wireless communication, and explore new sensing patterns.
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А ННОТА Ц И Я
Мониторинг и поддержание качества, безопасности и аутентичности пищевых продуктов являются наиболее важ‑
ными проблемными вопросами в пищевой промышленности. Самые современные гибкие сенсоры для мониторинга 
пищевых продуктов точно соответствуют потребностям в получении информации по многим параметрам в неболь‑
шом пространстве и более рациональном размещении, обеспечивая данные по механическим деформациям и при‑
легая соответствующим образом к произвольно изогнутым поверхностям. Гибкие сенсорные материалы с большой 
удельной площадью поверхности, высокой мобильностью носителя и плотностью носителя, плотными активными 
точками, прекрасной настраиваемостью и технологичностью, такие как двумерные углеродные наноматериалы, про‑
водящие полимеры и наногибридные материалы, дополнительно улучшили чувствительность, стабильность и селек‑
тивность гибких сенсоров. В данной статье предпринята попытка критического обзора передовых разработок в отно‑
шении материалов, методов изготовления и сенсорных механизмов устройств, а также применений гибких сенсоров 
с электрическим преобразованием. Кроме того, в данном обзоре рассмотрены механизмы преобразования некоторых 
типичных преобразователей с акцентом на лежащую в основе физику, включая модуляцию уровня легирования, ба‑
рьер Шоттки и межфазный слой, которые обычно приводят к изменениям в проводимости, рабочей функции и диэ‑
лектрической проницаемости. Мы также освещаем пользу, технические проблемы с соответствующими решениями 
современных гибких сенсоров и обсуждаем потенциальные стратегии для преодоления ограничений в потреблении 
энергии, количественном определении плюсов и минусов в поддержании качества и потребительских свойств, опти‑
мизации беспроводной связи и изучения новых сенсорных паттернов.

1. Introduction
1.1. How important is food safety?

The World Health Organization (WHO) pointed out [1] that contami‑
nated food is responsible for causing an estimated 600 million people fall 
ill globally, resulting in 420,000 deaths each year [1]. Over the past few 
years, the increasing awareness among consumers about a healthy life‑
style has sharply raised their familiarity towards food quality and safety 
[2]. Food quality is a reliable indicator that relates to the consumption 
needs and expectations of consumers. Common food quality includes 
factors such as freshness, texture, ingredients, grading of physical ap‑
pearance and so on. It can lead to taste, health, safety, and pleasure [3]. 
Food products with high quality are always expected and demanded by 
consumers [4]. Food safety problems typically include chemical pollution, 
microbial pollution, and physical pollution [2]. Bacteria, viruses, parasites 

and fungi existing in the environment may cause diseases of consumers, 
and they can also easily contaminate the consumable food materials [5]. 
During the past decades, pesticides have been widely used for high yield 
productions [6], while the increasing usage of various pesticides can lead 
to high levels of residues in foodstuff and accumulation in the food chain, 
which poses a huge threat to human health [7,8].

1.2. What are the key concerns in food monitoring?
With the globalization of economy and trade, and the rapid circula‑

tion of various food products around the world, potential food contami‑
nation, and fraudulent food manufacturing have prompted consumers 
to pay more attention to the quality and safety of their food [9]. All this 
has generated the urge to develop food monitoring systems that can 
control and prevent food-borne illnesses, ensure consumer health and 
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safety, and promote the development of the food industry. In recent years, 
significant progress has been made in food quality and safety monitor‑
ing based on traditional laboratory analysis and rigid sensor detection. 
Food quality detection involves measuring various parameters such as 
temperature [10], humidity [11], pH [12], flavor [13], multi-gas [14] and 
freshness marking [15]. On the other hand, food safety monitoring in‑
volves detecting microorganisms [16], pesticides [17], illegal additives 
malachite green [18], melamine [19], antibiotic residues [20] and so on. 
However, traditional rigid sensors exhibit several challenges in food 
monitoring. First, the intrinsic mechanical non-conformability property 
of rigid sensors makes them difficult to adapt to arbitrarily curved sur‑
faces and shape changeable parts (or movable parts). Secondly, rigid sen‑
sors are large, unbendable, and heavy, which makes effective integration 
with detection targets difficult. Thirdly, rigid sensors may not maintain 
consistent contact, resulting in inaccurate or unreliable data collection. 
Finally, manufacturing process of rigid sensors is extremely complex and 
contaminated, and they cannot be manufactured in individualized and 
small batches [21,22].

1.3. Flexible sensing have emerged as a prominent technological 
advancement in the realm of flexible electronics

Compared to conventional rigid sensors, flexible sensors play a crucial 
role in the application of flexible electronics, which possess unique advan‑
tages such as light weight, portability, great flexibility, stretchability, fold‑
ability, and adaptability [23–25]. Flexible electronics refers to circuits and 
electronic components that can retain their functions under circumstanc‑
es of bending or stretching [26–28]. The concept of flexible electronics was 
introduced in the 1960s when copper was patterned on polyimide, result‑
ing in a reduction in the thickness of the solar cell from 400 to 100 µm and 
leading to an unprecedented leap forward in power density [29–31]. Ever 
since then, innovations in materials with greater flexibility and large pro‑
cessability, such as conductive polymers [32–34], organic semiconductors 
[35,36], and amorphous silicon [37,38], have gradually laid the foundation 
for flexible electronics. With the rapid development of material science, 
flexible electronics have recently ridden the wave of carbon nanotubes 
[39,40], graphene platelets [41,42], precious metal nanomaterials (e.  g., 
silver NWs, platinum NPs, etc.) [43,44,45], nanohybrid materials (e.  g., 
CNT-PDMS composites) [46] and even optically transparent hydrogels 
[24], which brings high sensitivity, fast response, low power consumption, 
and long lifespan to flexible sensors. With the unique characteristics such 
as ultrathin, low modulus, light weight, high flexibility, and stretchabil‑
ity [47], flexible sensors precisely meet the needs in food monitoring: ac‑
quiring multi-parameter information in a small space, a more reasonable 
layout, providing data on packaging deformation [48], and conformably 
attaching to the surface of the skin [47]. Simultaneously, the new gen‑
eration of information technology represented by wearable Internet of 
Things (W-IoT) [49], blockchain [50] and cloud computing, have generated 
immense interest for the nascent flexible sensing because it can integrate 
and connect personnel, processes, data, and equipment enabling the high 
adaptability [51], high precision, multiple scale, dynamic non-destructive 
monitoring [49]. Flexible sensing in food monitoring has become increas‑
ingly significant in recent years [44,52,54,55], and is rapidly evolving in its 
application scenarios [44,48,52,53,54,55], and manufacturing methodol‑
ogy [44,53]. The synergy between flexible sensing and developments in 
material science [26–46] and microfabrication technology has been in‑
strumental in the success of both fields with innovations in one driving 
progress and in the other.

In this review, we systematically discuss the configurations, sensing 
mechanisms, and application of flexible sensors in food monitoring. First, 
we summarize the basic architecture regarding flexible substrates, con‑
ductive electrodes, and sensing materials focusing on the unique prop‑
erties (e. g., mechanical, electrical, chemical properties, etc.) of materi‑
als and the fabrication techniques. Secondly, we elaborate the sensing 
mechanisms and transduction mechanisms of several typical transducers 
(i.  e., resistor, electrochemical sensor, and capacitor). Thirdly, we com‑
prehensively discuss the applications of flexible sensors in the catego‑
ries of physical, chemical, and biological aspects. Finally, we provide an 
overview of the benefits and technical challenges of current flexible sen‑
sors, and highlight the potential strategies to improve the performance of 
state-of-the-art flexible food monitoring sensors.

2. Principle of food monitoring flexible sensors
To understand why sensitive detection of physical perturbations, 

chemical analytes, and microbes can be realized in flexible sensors, and 
how sensing materials work (e. g., resistive [58], capacitive [59], piezoelec‑
tric [44,60], potentiometric [61], amperometric [62,63], impedimetric [63] 
sensors, etc.), it is necessary to know the physics behind. A typical flexible 

food monitoring sensor contains a flexible substrate, and two functional 
components: a conductive interconnect/electrode [64,65,66,67] (herein‑
after referred to as “conductive electrode”) which connect the transducer 
and the output interface of data and an active sensing material-equipped 
flexible transducer (i. e., transducing the concentration of analytes or a 
physical perturbation, such as temperature, into an electrical signal). In 
this section, we will systematically introduce the configurations, materi‑
als, and working mechanisms of flexible sensors for food monitoring.

2.1. Flexible substrates
Flexible sensors have intrinsic characteristics including the abil‑

ity to bend [44,51–55], fold [51,55], stretch [68,69,70,71], twist [72], and 
even self-heal [56,73] if damaged. Flexible substrates are the main con‑
tributor to the deformation dynamics of the sensors. Conventional rigid 
substrates such as silicon [74], plastic [75], Al

2O3 [76], etc., have the ad‑
vantages of simple structure, convenient preparation and reliable re‑
sponsiveness. However, the rigidity hinders the capture of analytes and 
results in poor signal transduction [77], which limits the performance 
of conventional sensors. Flexible food monitoring sensors, whether at‑
tached to the living organisms’ surfaces [44,52,55,78] or integrated inside 
or outside of packaging [58], need to be lightweight, small, and easy to use 
[67]. Flexible substrates, taking polymers as an example, are intrinsically 
or molecularly stretchable materials, which use the materials themselves 
to accommodate strain [79]. At the molecular level, mechanical softness 
can be determined by two classifications: tailoring of the chemical struc‑
ture (e. g., the lengths and composition of the side chains and rigidity of 
the backbones) and tuning properties familiar to the polymer engineer‑
ing community (e. g., molecular weight, polydispersity, and cross-linking) 
[80]. The use of flexible substrates can greatly enhance the functionality, 
durability, and versatility of flexible devices, making them ideal for use in 
food monitoring. Among various materials used as substrates for flexible 
sensors in food monitoring, polymers [51,58,81,82] dominate as the most 
commonly employed base material, with a few exceptions using materials 
such as paper [83], carbon paper [84], carbon cloth [84], and others [74]. 
In this section, we will discuss several typical types of polymer substrates 
and paper-based substrates. Although paper and carbon-paper substrates 
are infrequently used as substrate materials, we will introduce them to‑
gether in the same section to provide an overview of their potential use.

2.2. Polymer substrates
In food monitoring, polymers represent the predominant substrate 

material for flexible sensors, accounting for a significant majority of their 
composition. In addition to high flexibility, adaptability and low cost, 
polymer substrates offer a range of unique advantages for flexible sensor 
components, including biocompatibility (e.  g., PEDOT: PSS, HPU, PLA, 
PDMS, PET, etc.) [63,85,86,87], elasticity (e. g., PDMS, PEDOT: PSS, HPU, 
rubber, etc.) [44,58,63,88], and intrinsic stretchability (e. g., PEDOT: PSS, 
PDMS, HPU, rubber, nitrile, etc.) [44,89,90]. Biocompatibility is highly ad‑
vantageous for direct contact measurements between sensors and living 
organisms; elasticity and intrinsic stretchability allow sensors to adapt 
to irregular deformations of the analytes’ surfaces, obtaining more reli‑
able data. The polymers used for flexible substrates can be classified into 
the following categories based on their chemical structure and proper‑
ties: (1) polyimide: PI (polyimide) [51,81,91]; (2) polyester: PET (poly‑
ethylene terephthalate) [59,92], PEN (polyethylene naphthalate) [93]; (3) 
polysiloxane: PDMS (polydimethylsiloxane) [44,58]; (4) biodegradable: 
PLA (polylactic acid) [87]; (5) rubber: rubber [88], nitrile (nitrile rubber) 
[89,90]; (6) polyurethane: HPU (hydrophilic polyurethane) [63]; (7) ep‑
oxy: epoxy (epoxy resin) [82]; (8) polyethylene: PE (polyethylene) [82], 
PVC (polyvinyl chloride) [58], OPP (oriented polypropylene) [62]. Herein, 
we will discuss several typical polymers regarding their physical, chemi‑
cal, and possibly biological properties.

Polyimide (PI): In the polymer family, polyimide (PI) has some notable 
properties. For example, PI is a high-temperature resistant polymer, with 
excellent mechanical and electrical properties. In the field of laser direct 
scribing for flexible PCB [53,58,81], PI is a commonly preferred substrate 
material due to its favorable properties. Xiao and his team [51] proposed 
and developed a flexible battery-free wireless electronic system (FBES) 
for food monitoring. The FBES was fabricated by laser direct scribing on 
commercial PET/PI/Cu film. PI also has good chemical resistance and can 
withstand exposure to many solvents and chemicals. Schöning et al. [94] 
developed calorimetric gas sensors on PI films for more precise detection 
of gaseous H2O2 over a wide H2O2 concentration range. In addition, the 
nature of the PI chemical repeat units plays a key role in the fabrica‑
tion of LDG electrodes [95]. Ever since it was first discovered in 2004 by 
Geim and Novoselov, graphene has garnered significant attention from 
the scientific community owing to its unparalleled properties [96,97,98]. 



521

Луо Д. и др.  |  ПИЩЕВЫЕ СИСТЕМЫ  |  Том 6 № 4  |  2023  |  С. 519–530

Figure 1. Flexible sensors application architecture. (A) Three typical categories of flexible electronics using physical, chemical, 
and biological sensing mechanism, respectively. E-Skin: Adapted with permission [56]. Copyright 2022, Nature Publishing Group. 

CLIPS: Cl-functionalized iontronic pressure sensitive material. Wearable electronics: Adapted with permission [57]. Copyright 
2016, Nature Publishing Group. ISEs: Ion-selective electrodes. Flexible sensor: The PI film was patterned using laser scribing to 

obtain 3D porous LIG. Then, liquid PDMS was drop-casted and heated for a specific period of time. Finally, the side of PDMS/
LIG was peeled off to obtain the stretchable LIG-based electrode. LIG: Laser induced graphene. (B) Summary of monitoring 

indicators, materials, transduction mechanisms, etc., of three types of flexible sensors (i. e., physical, chemical, and biological) 
used for food monitoring. (a) OP: Organophosphate. (b) PET: Polyethylene terephthalate, PDMS: Polydimethylsiloxane, PEN: 
Polyethylene naphthalate, PLA: Polylactic acid, ITO: Indium Tin Oxide, OPP: Oriented polypropylene. (c) IDE: Interdigitated 

electrodes, Tri-electrode: three electrode system, D-parallel lines: Double parallel lines, P-lollipop sheet: This is a new definition 
here that refers to a flat shape resembling a lollipop. (d) PEDOT: PSS: Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, 

CAB: Cellulose acetate butyrate, SWCNTs: Single-walled carbon nanotubes, LSG: Laser scribed graphene, rGO: Reduced graphene 
oxide, PPy: Polypyrrole, BP-Ti3C2-MXene: Two-dimensional phosphorene (BP) nanohybrid with graphene-like titanium 

carbide MXene (MXene, 2D material, can be synthesized by etching “A” from MAX phase (“M” represents transition metals, “A” 
represents group IIIA/IVA elements and “X” represents C and/or N elements)), p(D-co-M): poly(N-[3-(dimethylamino)propyl]-
methacrylamide-co-2-N-morpholinoethyl methacrylate), SPPM: SWCNT-PdNP-polystyrene microsphere, IrOx: iIridium oxide, 

OPH: Organophosphorus hydrolase, NPs: Nanoparticles. (C) Timeline of major events in flexible electronics development. PAB: 
Polyclonal antibody biosensor, TENG: Triboelectric nanogenerator.

Рисунок 1. Архитектура применения гибких сенсоров. (A) Три типичных категории гибкой электроники с использованием физического, 
химического и биологического сенсорного механизма, соответственно. Электронная кожа (E-Skin): адаптировано с разрешения [56]. Copyright 

2022, Nature Publishing Group. CLIPS: Cl- функционализованный ионтронный чувствительный к давлению материал. Носимая электроника: 
адаптировано с разрешения [57]. Copyright 2016, Nature Publishing Group. ISEs: ионоселективные электроды. Гибкий сенсор: Пленка PI была 

структурирована, используя лазерное скрайбирование для получения 3D пористого LIG. Затем был нанесен жидкий PDMS методом литья каплями 
и нагрет в течение определенного периода времени. Наконец, была отделена сторона PDMS/LIG для получения растяжимого электрода на основе 
LIG. LIG: лазерно-индуцированный графен. (B) Краткое представление мониторинговых индикаторов, материалов, механизмов преобразования 
и т. д. трёх типов гибких сенсоров (т. е., физический, химический и биологический), используемые для мониторинга пищевых продуктов (a) OP: 
органофосфат. (b) PET: полиэтилентерефталат, PDMS: полидиметилсилоксан, PEN: полиэтиленнафталат, PLA: полимолочная кислота, ITO: Оксид 

индия-олова, OPP: ориентированный полипропилен. (c) IDE: гребенчатые электроды, Tri-electrode: трех электродная система, D-parallel lines: 
двойные параллельные линии, P-lollipop sheet: Это новое определение здесь, которое относится к плоской форме, напоминающей леденец на 

палочке. (d) PEDOT: PSS: поли(3,4- этилендиокситиофен) полистиролсульфонат, CAB: ацетобутират целлюлозы, SWCNTs: одностенные углеродные 
нанотрубки, LSG: лазерно-скрайбированный графен, rGO: восстановленный оксид графена, PPy: полипиррол, BP-Ti3C2-MXene: наногибрид 
двумерного фосфорена (BP) с графено-подобным карбидом титана MXene (MXene, 2D материал, может быть синтезирован путём травления 
“A” из фазы MAX (“M” представляет собой переходные металлы, “A” представляет собой группу элементов IIIA/IVA и “X” представляет собой 

C и/или N элементы)), p(D-co-M): поли(N-[3-(диметиламино)пропил]-метакриламид-ко-2-N-морфолиноэтил метакрилат), SPPM: SWCNT-PdNP- 
полистироловая микросфера, IrOx: оксид иридия, OPH: фосфорорганическая гидролаза, NPs: наночастицы. (C) временная шкала основных 

событий в разработке гибкой электроники. PAB: биосенсор поликлональных антител, TENG: трибоэлектрический наногенератор
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Gomes et al. [99] developed an impedimetric immunosensor based on LIG 
electrodes functionalized with specific antibodies for the detection of 
Salmonella enterica using laser-induced porous graphene produced from 
PI, showing potential in the sensing field.

Polyethylene terephthalate (PET): PET has gained widespread popu‑
larity as a platform for food monitoring sensors, owing to its excellent 
mechanical properties (i. e. bendability, durability, etc.) [100], low cost, 
commercial availability [59], and outstanding adhesion with nanowires 
(mixed with PDMS, ZnO, etc.) [100] and functional ink materials (silver-
nanoparticles ink) [59]. Duan et al. [100] developed a flexible ammonia 
sensor with highly aligned conducting polymer nanowires fabricated by 
a capillary filling-based soft lithography technique on a PET substrate. 
Owing to the PET substrate’s superior mechanical stability and adhesion 
ability to nanowires, after 1200 bending cycles, no physical damage to 
the sensing material (flexible nanowire) was caused by mechanical fa‑
tigue failure of the substrate, which could have resulted in unfavorable 
resistance changes of a sensor. Rooij et al. [59] developed humidity sen‑
sors equipped with planar interdigitated electrodes (IDE) capacitors. The 
extraordinary adhesion between silver ink and PET substrate permitted 
the growth of thicker (up to 15 µm) layers of Ni on substrate. However, 
PET substrates are unsuitable for stretchable sensing platforms due to 
their relatively higher tensile strength (2–4 GPa) [65,67], and high tem‑
perature (>100 °C) [101] material processing is not possible on it because 
of less thermal stability.

Polydimethylsiloxane (PDMS): PDMS is a commonly used flexible sub‑
strate material of flexible sensors for food monitoring due to its unique 
mechanical properties [102], remarkable transparency (under visible 
spectrum) [58], extraordinary biocompatibility, and resistance against 
chemicals such as water and the majority of alcohols and bases [58]. Esc‑
obedo et al. [58] fabricated a smart strain tag through injecting an ac‑
tive material into a microchannel made from PDMS. This flexible strain 
sensor exhibited a considerably good performance with an average gauge 
factor of up to 13000, and an average degree of hysteresis (DH) within 
the range of < 9%. PDMS was also applied as a protective layer for flexible 
PCB (preventing the oxidation of the Cu circuit) [51] and NFC tag (encap‑
sulating and protecting against moisture, liquid, etc.) [58]. Xia et al. [44] 
fabricated a flexible dual-mechanism pressure sensor, where PDMS was 
employed as the substrate due to its exceptional elasticity, as well as the 
cross-linking matrix due to its chemical stability and low relative permit‑
tivity. This sensor demonstrates a long-term stability of over 5000 pres‑
sure cycles and exhibits satisfactory linearity, repeatability, and stability 
when detecting pressures in the range of 0–100 kPa.

2.3. Paper­based substrates
Just like the knight Edgar, who has fewer appearances but is essential 

in Shakespeare’s King Lear, paper-based substrates also play a crucial role 
in the fabrication of flexible food monitoring sensors. Paper-based sub‑
strates possess excellent properties including flexibility [109], breathabil‑
ity [66], hygroscopy [110], ionic conductivity modulation [110] and easily 
forming cross-linked structure with nanosized sensing materials [83], 
which makes them ideal for use as a lightweight, low-cost, recyclable, 
biocompatible starting substrate [83,111]. Tang et al. [83] designed a pa‑
per-supported H2S sensing electrode through loading CuxO-polypyrrole 
conductive aerogel (CuxO-PPy). The flexible electrode exhibits excellent 
H2S sensing and egg spoilage monitoring performance owing to the syn‑
ergetic effect between the different components and 3D porous architec‑
ture. Padalkar et al. [84] developed a ZnO-based biosensor on flexible and 
porous carbon paper/ cloth to detect organophosphates (e. g. paraoxon). 
Due to the three-dimensional substrate and the morphology of the nano‑
materials, the path length for charge carriers was significantly reduced, 
leading to a decrease in recombination losses and an increase in electri‑

cal conductivity. As a result, the device exhibited higher sensitivity and 
lower LOD values. Table 1 summarizes the mechanical, physicochemical 
and thermal properties of the four most used materials of substrates in 
fabrication of food monitoring sensors [104,105].

2.4. Conductive electrodes
Conductive electrodes play a crucial role in the fabrication of flex‑

ible sensors [67,118]. The function of the conductive electrode is to col‑
lect electrical signals from the sensor and transmit them to a proces‑
sor or other circuit for analysis and processing. They are usually made 
of conductive materials such as metal nanoparticles/nanowires (i. e. Au 
[100,113], Ag [58], Ni [59], etc.), conductive ink compound (e.  g., Ag/Cl 
ink, carbon ink, etc.) [114], conductive polymer (e. g. PEDOT: PSS [63], 
polypyrrole [83], etc.), laser-derived graphene (LDG) [91,99], graphene-
carboxymethyl cellulose(G-CMC) [119], etc. The design and fabrication of 
conductive electrodes have a significant impact on the performance and 
sensitivity of sensors.

The fabrication of conductive electrodes and device arrays have been 
investigated via three different approaches:

1. flexible electrodes were fabricated with a micrometer-scale thick‑
ness [59] using non-stretchable materials such as metal [58,100,113], 
polymer [91,99], and paper [83] through various processing techniques 
including inkjet printing [59], screen printing [87], laser irradiation [92], 
photolithography [113], etc.;

2. stretchable electrodes were obtained by intrinsically stretchable 
materials (e. g. PEDOT: PSS [63] and polypyrrole [83]);

3. stretchable electrodes were developed through i) geometric engi‑
neering of non-stretchable but flexible materials and ii) mixing conduc‑
tive ink with intrinsically stretchable polymers such as silicone elastomer 
and polystyrene-block-polyisoprene-block-polystyrene (PS-PI-PS) [90].

Molina-Lopez et al. [59] developed a functional humidity sensor with 
planar interdigitated electrodes (IDE) using an all-additive approach. 
They achieved this by ink-jetting the silver nanoparticle ink onto a PET 
substrate and electrodepositing nickel on silver with nickel thickness 
ranging from a few hundred nanometers to 15 µm on PET. High sen‑
sor stability was obtained by passivating printed silver electrodes with 
nickel. This prevented silver from oxidizing or releasing any possible 
trapped organic residue after interacting with humidity, and also pro‑
vided extra stiffness to reduce strains on the electrode plane. Escobe‑
do et al. [58] fabricated a strain sensing tag by injecting intrinsically 
stretchable conductive polymer PEDOT: PSS into the microchannel 
shaped by a copper mold in a PDMS substrate. Mishra et al. [90] de‑
signed a wearable organophosphorus (OP) glove biosensor via printing 
Ag/AgCl and carbon-based serpentine structures on the glove. This ex‑
cellent geometric structural design allows the electrode to withstand 
extreme mechanical deformations while detecting organophosphate 
(OP) nerve-agent compounds on suspicious surfaces and agricultural 
products. Table 2 summarizes the materials, fabricating methods and 
geometry forms of conductive electrodes in fabrication of flexible sen‑
sors for food monitoring.

3. Flexible sensing materials
Flexible sensors require the integration of various crucial compo‑

nents, including sensing materials that can be incorporated within or 
stacked onto flexible substrates [120]. Sensing materials play a vital 
role in the performance of flexible devices [67], enabling them to detect 
and respond to stimulation of analytes or physical perturbation. The 
electrical and physicochemical properties of sensing materials deter‑
mine the sensitivity, stability, and selectivity of the sensors. Therefore, 
the development and incorporation of advanced sensing materials are 
essential for the fabrication of flexible sensors. Conventional sensing 

Table 1. Summary of the mechanical, physicochemical and thermal properties of typical flexible substrates used in food monitoring sensors
Таблица 1. Краткое представление механических, физико-химических и термических свойств типичных гибких субстратов, 

используемых в сенсорах для мониторинга пищевых продуктов

Materialsa) Flexibility/
Stretchability

Young’s 
modulus [MPa]

Tensile 
strength [MPa]

Thermal stability / Coefficient 
of thermal expansion [K-1]

Chemical 
resistance Transparency Ref.

PI Flexible 2–3 × 103 70–150 Resist temperature (<450 °C)
3–6 × 10–5

Weak acids, 
alkali Low [101,103,

104,105]

PET Flexible 2–4 × 103 80 Resist temperature (<100 °C)
2–8 × 10–5

Dissolvable in 
acetone

High
(> 85%)

[101,103,
104,105]

PDMS Stretchable 1.8b) 6.7b) Resist temperature (<100 °C)
30–31 × 10–5

Ethanol and 
acetone

High
(> 95%) [106,107]

Paper Flexible 2.1–2.8 × 103 40–60 Resist temperature (<100 °C)
0.2–1.6 × 10–5 No No [101,108]

 a) PI: polyimide; PET: polyethylene terephthalate; PDMS: polydimethylsiloxane; b) SYLGARD184 silicone elastomer.
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materials are modular, generally semiconducting and conducting in‑
herently, changing their electrical properties upon exposure to various 
application scenarios [67]. Although their electronic performance ex‑
hibits high carrier mobility and stability, compared to novel nanoma‑
terials such as conductive polymers, they show weaknesses in physical 
and chemical properties: high Young’s modulus, poor controllability 
and tunability of chemical composition and molecular structure [120]. 
The sensing materials need to be lightweight, low-cost, and well com‑
patible with large scale processing [67]. With advancement in nano‑
technology, carbon nanomaterials [67,121], conductive polymers [122], 
nanohybrid materials, metal nanomaterials (e. g., AuNPs, BiNPs, etc.) 
[114] have been demonstrated to be promising sensing materials in 
flexible electronics applications. Numerous materials such as laser-
scribed/induced graphene (LSG/LIG) [92,95,99,123,124,125], laser-
induced porous graphene (LIPG) [112,115], graphene-CMC (carboxy‑
methyl cellulose) [119], SWCNT-PdNP-polystyrene microsphere (SPPM) 
[117], carbon spherical shells (CSS) [88], CuxO-PPy@GO aerogel [83], 
PEDOT: PSS [44,58,126,126,128], poly(N-[3-(dimethylamino)propyl]-
methacrylamide-co-2-N-morpholinoethyl methacrylate) (p(D-co-M)) 
[116], Ti3C2-MXene/BP nanohybrid [112], AuNPs [114], iridium oxide 
(IrOx) nanoparticles [60], etc., have exhibited remarkable performance 
in various research settings. In this section, we focus on three catego‑
ries of nanomaterials: carbon nanomaterials, conductive polymers, and 

nanohybrid materials. The electrical, physical, mechanical, and chemi‑
cal properties, fabrication methods, and sensing mechanisms of sensing 
materials are explained.

3.1. Carbon nanomaterials
The unique electronic, mechanical, and chemical properties of car‑

bon nanomaterials make them very interesting for developing the new 
generation of miniaturized, low-power, ubiquitous sensors [121,129]. 
Low-dimensional carbon structures, with the majority of their atoms ex‑
posed to the surroundings, provide a large specific surface area that can 
be advantageous in achieving high sensitivity [121,130]. In the last few 
years, nanomaterials like carbon spherical shells (CSS), single-walled car‑
bon nanotubes (SWCNTs), laser-scribed graphene (LSG), laser-induced 
porous graphene (LIPG), laser-scribed graphene oxide (LSGO), reduced 
graphene oxide (rGO), etc., have become the most studied carbon-based 
materials for developing food monitoring sensors. In this part, we will 
discuss two types carbon-based nanomaterials systematically.

Single-walled carbon nanotubes (SWCNTs): After their discovery 
in 1991 by Iijima and Ichihashi, carbon nanotubes (CNTs) have been 
extensively researched for their unique electrical, physical, mechani‑
cal, and chemical properties in the development of high-performance 
sensing devices [131]. Sensors equipped with SWCNTs exhibit revers‑
ible stretchability, fast response and substantially higher sensitivity at 

Table 2. Materials, fabricating methods and geometry forms of conductive electrodes in fabrication of food monitoring sensors
Таблица 2. Материалы, методы изготовления и геометрические формы проводящих электродов при изготовлении сенсоров для мониторинга 

пищевых продуктов

Analytes/Monitoring 
indicatorsa) Materials b) Methods of fabrication c) Geometry forms d) Ref.

Temperature Silver conductive paste Stencil printing Planar serpentine structures [58]

Humidity Ag NPs ink
Ni

Inkjet printing
Electroplating IDE [59]

Pressure PDMS
Ag NWs

Spinning coating
Drop-casting Planar sheet [44]

Strain PEDOT: PSS Injecting Nanowire [58]

H2S Cu Commercial Cu foil Planar sheet [83]

PH

Au, Cr
IrOx

Ag/AgCl

e-beam evaporation
Sol-gel process
Electroplating

Planar double electrode 
system [81]

ITO Laser exfoliating and
Evaporating patterning Planar lollipop sheet [61]

PDDA-IrOx LbL IJP and alternate deposition Planar sheet [60]

Sulfonamides LIPG Laser scribing Three-electrode system [112]

NH3 Au Evaporating through copper shadow mask IDE [100]

Isoprene and H2S
ITO
Au

Photolithography
Magnetron sputtering IDE [113]

O2
Ag-OPP cathode

Zinc anode
Commercial available silver-deposited OPP film

Commercial available zinc film Planar sheet [62]

Heavy metal Ag/Cl conductive ink
Carbon conductive ink Printing Planar array [114]

Pesticides Carbon ink
Ag/AgCl

Screen printing
Coating Three-electrode system [87]

LIPG Laser scribing Three-electrode system [115]

Carbon ink and CSS/PCBN Screen printing and drop-casting Three-electrode system [88]

ZnO nanostructures and Ag/AgCl Electrodepositing Three-electrode system [84]

H2O2 PEDOT: PSS/HPU/HRP Screen printing Three-electrode system [63]

LSG
Ag/AgCl

Laser irradiation
Electrodeposition Three-electrode system [92]

CO2 Carbon black Printing Planar double parallel lines [116]

Ethylene gas Gold foil Laser direct writing IDE [117]

OP Ecoflex, carbon ink,
and PS-PI-PS Screen printing Three-electrode system with 

serpentine structures [90]

Biogenic amines LSG Laser scribing Three-electrode system with [91]

Salmonella enterica LSG Laser scribing Planar lollipop sheet [99]
 a) OP: Organophosphate.
 b) Ag NPs: Ag nanoparticles, Ni: Nickel, PDMS: Polydimethylsiloxane, Ag NWs: Ag nanowires, PEDOT: PSS: Poly(3,4-ethylenedioxythiophene) polystyrene 

sulfonate, IrOx: Iridium oxide, ITO: Indium Tin Oxide, PDDA: Polydiallyldimethylammonium, LIPG: Laser induced porous graphene, OPP: Oriented poly‑
propylene, CSS: Carbon spherical shells, PCBN: Printex carbon nanoballs, HPU: Hydrophilic polyurethane, HRP: Horseradish peroxide, LSG: Laser scribed 
graphene, Ecoflex: Ag/AgCl ink with platinum-catalyzed silicone elastomer, PS-PI-PS: Polystyrene-block-polyisoprene-block-polystyrene.

 c) LBL IJP: Layer-by-layer inkjet printing.
 d) IDE: Interdigitated electrodes, Planar lollipop sheet: This is a new definition here that refers to a flat shape resembling a lollipop, formed by a combination 

of a circle and a rectangle.
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room temperature [66,132], owing to their high carrier mobility, excellent 
physical properties, ease of modification, and sizeable surface-area-to-
volume ratio, which provides a huge number of active sites for analytes 
[133,134,135,136]. Yan et al. [117] developed a flexible paper-based che‑
moresistive sensor by modifying a SWCNT-PdNP-polystyrene micro‑
sphere (SPPM) composite (SPPM/FWPCS) for the low-cost and online 
detection of C2H4 from banana. SWCNT-PdNP-PM composites were syn‑
thesized by a method of self-assembly under van der Waals forces, and 
then was pipetted on the sensing area of the interdigitated electrodes and 
dried at room temperature. The sensing mechanism involves the release 
of trapped electrons due to the oxidation and cleavage of ethylene, re‑
sulting in a decrease in resistance. More specifically, the Schottky barriers 
between SWCNTs, PdNPs, and adsorbed oxygen in the sensing composite 
create an electron depletion layer, and adsorbed oxygen (O2–) is formed 
during the process. The concentration of C2H4 can be detected down to 
100 ppb (subppm level). The detection range of a rigid sensor is the total 
amount of ethylene in the entire space, which, coupled with diffusivity of 
gases, leads to hysteresis for the monitoring of fruit ripeness and corrup‑
tion. Flexible sensors can be used to overcome this limitation by placing 
them inside fruit packaging.

Laser-scribed graphene (LSG): The discovery of graphene in 2004 by 
Geim and Novoselov generated great scientific interest because of its 
excellent properties [137–141], including rapid electron mobility, self-
assembly behavior, excellent conductivity, large specific surface area, 
high mechanical strength and stability, etc. [141–149]. Graphene is a 
single layer of sp2-hybridized carbon atoms covalently bound together 
in a honeycomb lattice [140]. First, its outstanding electronic proper‑
ties, such as high carrier mobility and high carrier density, make it a 
promising candidate for fabricating high-performance electrically-
transduced analytical devices [64,148]. Secondly, the surface prop‑
erties of graphene enable it to interact with a wide range of analytes 
through different mechanisms such as van der Waals forces, electron 
transfer, or covalent bonding [140,149], which can lead to changes in 
the conductivity of the sensing layer. Thirdly, graphene’s high surface-
to-volume ratio implies that each carbon atom in graphene functions 
as a surface atom, resulting in the maximum possible surface area per 
unit volume. As a result, the charge transport in graphene is extremely 
sensitive to its chemical surroundings [149,150]. Fourthly, flexible elec‑
tronic devices often undergo mechanical stress and deformation during 
operation, so they require materials that can withstand these stresses 
without breaking or losing their functionality. Graphene, which has 
high mechanical strength and stability, is therefore a promising mate‑
rial for use in flexible electronic devices. By using graphene as a base 
material, flexible electronics can be designed with improved durability 
and reliability, even under harsh operating conditions [146,151]. Tradi‑
tional methods for producing graphene, such as thermal decomposition 
[152,153], mechanical exfoliation [154,155], and chemical vapor depo‑
sition (CVD) [156,157] are time-consuming and complex. In contrast, 
laser-derived graphene (LDG) technology offers an easy, mask-free, and 
low-cost alternative for the production of graphene-based materials. 
The products are now mainly termed laser-scribed graphene (LSG) or 
laser-induced graphene (LIG), etc. [95]. Aparicio-Martínez et al. [92] de‑
veloped a novel, flexible and non-enzymatic electrochemical H2O2 sen‑
sor based on a laser-scribed graphene (LSG) electrode decorated with 
silver nanoparticles (LSG-Ag). They fabricated a graphene electrode on 
a PET substrate that was coated with GO, using a 780 nm 5 mW infra‑
red laser from a DVD unit. And then, they decorated the LSG electrode 
with silver nanoparticles (LSG-Ag). The changes in morphology caused 
by the laser treatment, such as increased roughness, expansion, surface 
defects, and exposure of edge planes, have a significant impact on the 
electrochemical performance of the material [123,158,159]. Specifically, 
during silver electrodeposition, defects and features of LSG acted as nu‑
cleation sites and induced a high density of non-spherical nanoparticles 
(sizes from 70 to 120 nm) with uniform distribution over the LSG layers. 
The sensing mechanism of this amperometric sensor can be described 
as follows: the sensing material’s role is to interact with the analyte 
through the active sites on its surface, while the electrode is maintained 
at a fixed potential and the cathode current is monitored over time. The 
cathode current magnitude is related to the concentration of the ana‑
lyte present. The morphology features of LSG such as 3D architecture, 
surface defects, exfoliation, edge plane exposure and oxygen removal 
were combined with the electrocatalytic activity of AgNps, resulting in 
an overall enhanced non-enzymatic H2O2 detection. The LSG-Ag sensor 
demonstrated low LOD of 7.9 µM, rapid amperometric response within 
3 seconds, as well as high repeatability of 3% R.S.D. and reproducibility 
of 4.5% R.S.D. It also showed minimal loss of performance even after 
continuous bending.

3.2. Conductive polymers
Conductive polymers (CPs) have been acknowledged as a distinctive 

category of organic materials possessing exclusive electrical and opti‑
cal characteristics comparable to those of inorganic semiconductors and 
metals [160]. CPs can be synthesized through simple, versatile, and cost-
effective methods. Furthermore, they can be easily assembled into supra‑
molecular structures with multifunctional capabilities through electropo‑
lymerization processes [161]. The development of various methodologies 
has enabled the modification and tuning of CPs to incorporate them into 
the fabrication of stretchable sensors, which include both physical and 
electrochemical sensors. Such novel innovations are highly desired and 
sought after in various fields of flexible sensing, including temperature 
monitoring, strain sensing, and the high-sensitivity active gas sensing 
(e. g., H2S), as they hold the potential to pave the way for future break‑
throughs. Conjugated π polymers are a class of materials with electrons 
held in their backbones [162], such as poly(3,4-ethylenedioxythiophene) 
(PEDOT) and polypyrrole (PPy). The unsaturated backbone of conductive 
polymers allows for the delocalization of π-electrons, which facilitates 
the movement of charge carriers along an electrical pathway [163,164]. 
Flexible sensing materials that incorporate CPs exhibit RT-sensing ca‑
pabilities and ease of chemical modification. Specifically, the high flex‑
ibility of polymeric materials enables the sensing materials to be easily 
deposited or patterned onto flexible or stretchable substrates, and they 
can withstand mechanical deformation during use, thus maintaining the 
integrity of the sensing layer [67]. As typical examples of conductive poly‑
mers, PEDOT: PSS and polypyrrole (PPy) will be discussed here.

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: 
PSS): polythiophene is a fascinating material due to its persistent conduc‑
tivity and impressive electrical conductivity (103 S cm‑1), which is influ‑
enced by the dopant and polymerization type [165,167,167]. PEDOT can 
be polymerized through electrochemical or oxidative chemical methods, 
and it is a polymer with high electrical conductivity [160]. Compared to 
PPy, PEDOT possesses superior chemical [168–170] and thermal [170] 
stability and has been postulated for possible use as an interfacing agent 
[160]. PEDOT can be hybridized with poly(styrenesulfonate) (PSS) to im‑
prove electrical conductivity [171]. PSS was used for doping the PEDOT for 
film fabrication by spin coating and vapor phase polymerization [160]. The 
conductivity mechanism of PEDOT: PSS is based on the synergistic effect 
between PEDOT and PSS, where PEDOT serves as the conductive backbone 
providing the pathway for electron transfer, while PSS acts as the electro‑
lyte stabilizing the polymer chains of PEDOT and regulating the conduc‑
tivity. The highly ordered hybridization between PEDOT and PSS results 
in PEDOT: PSS composite materials with high conductivity. Conductive 
polymers are a popular choice for temperature sensing due to their ease 
of processing and excellent electrical properties, although they may be un‑
stable at high temperatures [172]. However, PEDOT: PSS stands out as one 
of the most stable organic conductive polymers with electrical properties 
similar to those of a metal or semiconductor [173,174]. Escobedo et al. [58] 
designed a temperature sensing tag by printing silver electrodes on a flex‑
ible polyvinyl chloride (PVC) substrate and then drop-casting PEDOT: PSS 
on silver electrodes with a gap of 2 mm. With an increase in temperature, 
the mobility of carriers within the sensing layer is predicted to rise, result‑
ing in a decrease in resistance. This PEDOT: PSS based temperature sensor 
showed a 70% change in resistance for a temperature change of ~60 °C. Ja‑
copo et al. [79] developed a dual-mode highly flexible hydrogel-based H2O2 
sensor, which is based on poly (3,4-ethylenedioxythiophene): polystyrene 
sulfonate (PEDOT: PSS) as the transducer, hydrophilic polyurethane (HPU) 
as the hydrogel matrix, and horseradish peroxide (HRP) as the H2O2 spe‑
cific redox enzyme. The solution containing PEDOT: PSS/HPU/HRP was 
applied onto the work electrode of a three-electrode system using a drop-
casting method. The sensor operated in both amperometric and chemire‑
sistive dual modes. The sensing mechanism can be explained as follows. 
In the amperometric mode, H2O2 undergoes electrochemical reduction in 
the presence of HRP to produce water and oxygen on the surface of the 
modified electrode [175]. The process entails the alteration of the oxida‑
tion state of the iron ion within the heme group present in HRP, result‑
ing in the discharge of electrons that are subsequently transmitted to the 
electrode, thereby inducing a current peak [176,177]. Conductive PEDOT: 
PSS plays a key role in the direct electron transfer between the enzyme and 
the electrode [178]. In the chemiresistive mode, the sensing mechanism 
relies on the conformational change of PEDOT between two molecular 
structures, quinoid and benzoid, in response to H2O2. The quinoid group, 
which has alternating double bonds and more charges, is more conductive 
form leading to an increase in PEDOT: PSS conductivity. The change to the 
fibrillary-like structure of quinoid increases the delocalization of charges 
and π-electrons in the PEDOT backbone, resulting in higher conductivity. 
The conformational change to the coil-like benzoid structure reduces elec‑
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tron mobility [126,179]. The HRP and H2O2 reaction initiates the PEDOT 
conformational change to the quinoid structure, resulting in higher con‑
ductivity [178]. The amperometric sensor showed a rapid response time of 
less than 6 seconds, selectivity towards common interferents, and a broad 
detection range spanning from 100 µM to 101.6 mM.

Polypyrrole (PPy): PPy can be traced back to the 1919 studies by Angeli 
and Pieroni, who described the synthesis of pyrrole blacks from pyrrole 
magnesium bromide [180]. PPy is unique among the electronically con‑
ductive polymers in that the pristine form is oxidized by molecular oxygen 
[181]. PPy exhibits impressive conductivity, outstanding redox properties, 
biocompatibility, tunability and processability, as well as environmen‑
tal stability, and could be widely applied in the field of chemical sensing 
[182,183,184]. Conductive polymer aerogels are considered a promising 
option to create versatile electronics due to their mechanical deform‑
ability and their 3D porous structures [185]. Compared to conventional 
porous materials, conductive polymer aerogels possess advantages such 
as regulated conductivity, low density, large specific surface areas, and in‑
terconnected channels, making them suitable for gas sensing applications 
[83]. Shu et al. [83] developed a paper substrate-based flexible H2S sensor 
by incorporating CuxO-polypyrrole conductive aerogel (CuxO-PPy) into 
the sensor design. The aerogel is prepared by in situ polymerization of 
pyrrole with a “big-macromolecular surfactant” of graphene oxide (GO). 
GO is composed of both aromatic regions consisting of benzene rings and 
aliphatic regions consisting of oxygen-containing groups, which give it 
amphiphilic properties [186]. The surface of graphene oxide was improved 
by the self-assembly of positively charged pyrrole monomers through π-π 
stacking and electrostatic interactions, resulting in a better pyrrole dis‑
persion. Additionally, the 3D porous structure of the coated aerogel was 
maintained on the paper substrate, and due to the combined mechanical 
properties of the aerogel and paper, the resulting paper electrode was me‑
chanically flexible and could be easily cut into desired shapes. The sensing 
mechanism of this chemiresistive gas sensor can be speculated as follows. 
First, when the sensor was exposed to H2S, some of the absorbed gas mol‑
ecules dissociated into H+ and S2

‑ (HS-). Secondly, the S2- readily reacted 
with semiconducting CuxO, transforming it into metallic CuxS with good 
conductivity [187,188]. This process facilitated the continuous dissocia‑
tion of H2S molecules, generating more H+ ions. Thirdly, the dissociated 
H+ ions protonated PPy, serving as the host conducting pathway, and 
facilitated electron transfer through multidimensional paths, including 
2D nanosheets and 3D cross-linking frameworks, ultimately improving 
conduction [189]. The CuxO promoted the protonation of PPy. Fourthly, 
the aerogel’s inherently hierarchical and porous micro-nanostructures 
of CuxO-PPy@GO, with a large surface area and pore volume, provided 
abundant reaction sites (such as vacancies, defects, functional groups, 
and sp2-bonded carbon) for gas molecule adsorption [190]. Moreover, the 
loose and porous structure facilitated rapid gas diffusion and worked si‑
multaneously on both the internal and external surfaces. Overall, the ex‑
ceptional sensing performance was attributed to the synergistic function 
of the micro-nanostructures, the strong chemical interaction between 
CuxO and H2S, and the effective proton acid doping with PPy.

3.3. Nanohybrid materials
Nanohybrid materials are distinct combinations of inorganic and or‑

ganic materials [191]. Compared to single-component materials, hybrid 
materials possess a diverse range of functionalities as well as enhanced 
chemical and physical properties. Advanced nanostructures that are 
based on organic/inorganic composites play a significant role in driv‑
ing innovations across various fields [192,193]. Hybrid materials exhibit 
enhanced properties such as higher conductivity, increased porosity, 
improved catalytic activity, and greater optical and electrical poten‑
tial compared to their single-component counterparts [194,195]. When 
polymeric materials are combined with metal oxides or other inorganic 
materials, the resulting composite can exhibit enhanced selectivity and 
unique sensing properties. This is due to the synergistic and geometrical 
effects of the different components [196,197]. Polymer materials and 2D 
graphene-based materials have been shown to have a large surface area 
and good electrical conductivity, but the performance of these devices 
can be further improved by synthesizing nanohybrid materials.

BP-Ti3C2-MXene: Zhu Xiaoyu et al. [115] designed an ultra-trace 
analysis phytoregulator α-naphthalene acetic acid (NAA) sensor fabri‑
cated by two-dimensional phosphorene (BP) nanohybrid with graphene-
like titanium carbide MXene (Ti3C2-MXene. MXene, 2D material, can be 
synthesized by etching “A” from MAX phase (“M” represents transition 
metals, “A” represents group IIIA/IVA elements and “X” represents C and/
or N elements)) on the flexible substrate surface of laser-induced porous 
graphene (LIPG). A BP-Ti3C2-MXene nanohybrid with excellent ambient 
stability is produced through liquid-phase exfoliation of black phospho‑

rus with cuprous chloride and Ti3C2-MXene, which is obtained by etch‑
ing Al layers of Ti3AlC2, using ultrasonic assistance in an organic solvent. 
MXene has a unique thin-layered nanostructure that provides ample 
space for supporting other functionalized nanomaterials. However, the 
performance of MXene is compromised when its nanosheets restack too 
severely, which can damage the effective area [198]. To address this issue, 
a noncovalent nanohybrid between BP and MXene is expected to resolve 
the aggregation of MXene or BP and combine the advantages of both ma‑
terials [199]. The sensing mechanism of this electrochemical sensor is as 
follows. In the amperometric mode, the working electrode modified with 
Ti3C2-MXene/BP biomimetic enzymes exhibits oxidase-like characteris‑
tics (nanozyme) when the zymolyte NAA is electrocatalytically oxidized. 
Electron transfer reactions generate measurable changes in current. 
Since the size of the measured current is proportional to the number of 
NAA molecules in the solution, the relative concentration of the mol‑
ecules can be monitored on a physiological timeline [200]. The LOD of the 
sensor is as low as 1.6 nM with a wide linear range of 0.02–40 µM.

4. Principle of flexible sensing
The sensing layer of a flexible sensor interacts with physical distur‑

bances or analytes, causing changes in its own physical properties, which 
are then transduced into variations of electrical signals (e.  g., current, 
voltage/ Nernst potential, capacitance, etc.) or others by the transducer. 
In this section, we will discuss the sensing principle of electrically-trans‑
duced analytical flexible sensors from the aspects of sensing and trans‑
duction mechanisms.

4.1. Sensing mechanism
A typical sensing device consists of two primary elements: sensing 

material and the transducer [201]. The sensing material is accountable for 
responding to physical perturbation (e. g., temperature, humidity, pres‑
sure, mechanical deformation, etc.) or chemical/biological analytes (e. g., 
gases, pesticides, foodborne pathogens, etc.). This interaction results in a 
modification of one or more properties of the sensing material, which is 
subsequently transformed into detectable signals by the transducer [202–
204]. Sensors capable of detecting physical changes have been achieved 
through the collaborative advancements in material development, in‑
volving the synthesis of materials with novel electrical, optical, and me‑
chanical properties and refinement in the methods of integrating mate‑
rials into devices [205]. In contrast, to advance electrically-transduced 
chemical sensing, there is an added level of complexity posed by the 
chemical interfaces between the sensing material and the analyte [201]. 
The chemical interfaces between the material and the analyte are crucial 
in determining the sensitivity, selectivity, stability, and biocompatibility 
of chemical sensing devices [206–208]. The interaction between sensing 
materials and analytes is a prerequisite for the operation of sensors.

We can classify these interactions as:
1. Non-covalent interactions, including van der Waals forces, hydro‑

gen bonds, coordination bonds, and π–π interactions.
This may result in reversible or partially reversible reactions. For ex‑

ample, the large, electron-rich π–surface of graphene can interact with 
target analytes through van der Waals forces, charge transfer, and π–π 
interactions.

2. Covalent bonding.
This leads to irreversible reactions but brings improvements in selectiv‑

ity and sensitivity. For example, metal oxides contain chemically adsorbed 
oxygen molecules on their surface, which are responsible for the interaction 
with gaseous analytes through oxygen-involved chemical reactions [64].

4.2. Transduction mechanism
The sensing material serves a dual purpose in chemical sensing. Firstly, 

it should have the ability to covalently or noncovalently interact with the 
analyte on its surface. Secondly, it should react to this interaction by al‑
tering its electrically related physical properties. The transduction mecha‑
nism relies on conductivity, work function, or electrical permittivity, which 
can be transformed into a change in resistance, capacitance, or inductance 
[203]. These transduction events, which involve changes in resistance/im‑
pedance, capacitance, current, and voltage/electrical potential, can be de‑
tected and measured using various devices such as resistors, electrochemi‑
cal sensors, capacitors, diodes, and field-effect transistors. The magnitude, 
frequency, and phase of the resulting signal can provide important infor‑
mation about the sensing event [64]. In flexible sensing for food monitor‑
ing, the main transducers are resistors and electrochemical sensors, while 
capacitors are uncommon. Diodes and field-effect transistors are rarely 
seen. The modulation of doping level, Schottky barrier, and the formation 
of dipole and interfacial layer are the basic mechanisms that typically lead 
to changes in conductivity, work function, and permittivity [64].
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